【离散数学必刷题】谓词逻辑(第二章 左孝凌版)刷完包过!

news2025/1/3 4:09:02

专栏:离散数学必刷题

本章需要掌握的重要知识:

1.利用谓词表达式表示命题

2.变元的约束

3.谓词公式的定义、谓词公式的赋值

4.谓词公式的翻译(注意在全总个体域时使用特性谓词)

5.有限论域上量词的消去

6.谓词公式中关于量词的等价公式和蕴含式(表2-5.1)

7.前束范式 前束析取范式 前束合取范式

8.谓词推理

8种题型(速通版): 

【1】用谓词表达式写出下面几个命题(都是容易写错的经典例题):

1、某些大学生运动员是国家选手。

设 S(x) : x 是大学生 。 L(x) : x 是运动员 。C(x) : x 是国家选手。

则有:(\exists x)(S(x) \wedge L(x)\wedge C(x))

2、没有一个国家选手不是健壮的。

设 S(x) :x 是国家选手。L(x):x 是健壮的。

则有:(\forall x)(S(x)\rightarrow L(x)) 或者 \rightharpoondown (\exists x)(S(x)\wedge \rightharpoondown L(x))

3、所有老的国家选手都是运动员。

设 S(x) : x 是国家选手。P(x) : x 是老的 。 L(x) : x 是运动员。

则有:(\forall x)(P(x)\wedge S(x)\rightarrow L(x))

4、没有一位女同志既是国家选手又是家庭妇女。

设 S(x) : x 是女同志。 P(x) : x 是国家选手 。Q(x) : x 是家庭妇女。

则有:\rightharpoondown (\exists x)(S(x)\wedge P(x)\wedge Q(x))

5、所有运动员都钦佩某些教练。

设 S(x) : x 是运动员。 P(y) : y 是教练。A(x , y) : x 钦佩 y。

则有:(\forall x)(S(x)\rightarrow (\exists y)(P(x) \wedge A(x,y)))

6、有些大学生不钦佩运动员。

设 S(x) : x 是大学生。P(y) : y 是运动员。A(x , y) : x 钦佩 y。

则有:(\exists x)(S(x)\wedge (\forall y)(P(x)\rightarrow \rightharpoondown A(x,y))) 


【例题】

【2】利用谓词公式翻译下面几个命题:

1、如果有限个数的乘积为零,那么至少有一个因子等于零。

设 N(x) : x 是有限个数的乘积。z(y) : y 等于零 。P(x) : x 的乘积为零。F(y) : y 是乘积中的一个因子。

则有: (∀x)( N(x)∧P(x)→(∃y)( F(y)∧z(y) ) )

2、对于每个实数x,存在一个更大的实数y。

设 R(x):x 是实数。Q(x,y):y 大于 x 。

则有: (∀x)( R(x)→(∃y)( Q(x,y)∧R(y) ) ) 

3、存在实数x,y 和 z ,使得x 与 y之和大于 x 与 z 之积。

R(x): x 是实数 。G(x,y) : x 大于 y 。

则有:(∃x)(∃y)(∃z)( R(x) ∧ R(y) ∧ R(z) ∧ G(x+y , x⋅z) )。

【3】 对下列谓词公式中的约束变元进行换名:
1、(∀x)(∃y)(P(x,z)→Q(y)) \leftrightarrow S(x,y)

则为:(∀u)(∃v)(P(u,z)→Q(v)) \leftrightarrow S(x,y)

2、((∀x)(P(x)→(R(x)∨Q(x)))∧(∃x)R(x))→(∃z)S(x,z)

则为:((∀u)(P(u)→(R(u)∨Q(u)))∧(∃v)R(v))→(∃z)S(x,z)

这里可能有些同学会疑惑了,为什么第2题的 z 变元不换名啊?

首先我们要明确进行约束变元换名的前提:

换名是为了避免出现同一个变量既是约束变元,又是自由变元的情况出现。如果不是这种情况,可以不换。


【4】对下列谓词公式中的自由变元进行代入:

【5】 有限论域消去量词,并对以下公式赋值后求真值

【6】 请记住以下的谓词公式的等价式和蕴含式:


⚠️注意:全称量词与存在量词在公式中出现的次序,不能随意更换。

如果你想记下这个,可以通过如下图辅助性记忆:

用双向箭头表示等价,单向箭头表示蕴含,见它们之间的关系。


【例题】

【7】 求前束合取范式:


前束合取范式的定义:(注意:可以l_{1} = l_{2} ,也可以l_{1} != l_{2} ,所以我们只需要简单得满足合取范式、析取范式的结构就可以了,不用满足主合取范式和主析取范式得结构哦!)

前束析取范式定义:


做题时,可能遇到的三种情况:

  • 假设求出的前束合取范式,它的每一个A_{ij} 都唯一,那么可以采用主合取范式和主析取范式的性质:

求出前束合取范式后,根据第一章主合取范式和主析取范式的知识:

在真值表中,一个公式的真值为T的指派所对应的小项的析取,即为此公式的主析取范式。

那剩下的真值为F的指派所对应的大项的合取,即为此公式的主合取范式。

我们可以直接通过前束合取范式求出前束析取范式:

【例题】



  • 假设求出的前束合取范式,存在有A_{ij} 不唯一,那么就硬算呗!

例如求:(∀x)(P(x)→Q(x,y))→((∃y)P(y)∧(∃z)Q(y,z)) 它的前束合取范式和前束析取范式

答:先求其前束合取范式

(∀x)(P(x)→Q(x,y))→((∃y)P(y)∧(∃z)Q(y,z))

⇔¬(∀x)(¬P(x)∨Q(x,y))∨((∃y)P(y)∧(∃z)Q(y,z))

⇔(∃x)(P(x)∧¬Q(x,y))∨((∃u)P(u)∧(∃z)Q(y,z))

⇔(∃x)(∃u)(∃z)((P(x)∧¬Q(x,y))∨(P(u)∧Q(y,z)))​

我们发现P(x) 和 p(u) ,Q(x,y) 和 Q(y,z)它们的A_{ij}不唯一,所以当我们再求出它得前束析取范式时,就只能将其展开,表示前束析取范式:

(∃x)(∃u)(∃z)( (P(x)∨P(u))∧(P(x)∨Q(y,z))∧(¬Q(x,y)∨P(u))∧(¬Q(x,y)∨Q(y,z)))​

  • ⚠️注意:

当我们求一个wff的前束合取范式或析取范式时,有些可以直接求出了它的真值(T或F),

例如求:(∃x)P(x)∨(∃x)Q(x))→(∃x)(P(x)∨Q(x))的前束合取范式和前束析取范式

则:

((∃x)P(x)∨(∃x)Q(x))→(∃x)(P(x)∨Q(x))

⇔¬((∃x)P(x)∨(∃x)Q(x))∨(∃x)(P(x)∨Q(x))

⇔¬(∃x)(P(x)∨Q(x))∨(∃x)(P(x)∨Q(x))

⇔T​

那么 T 既是前束析取范式,也是前束合取范式,这就是最终结果!!!

我们知道:

单个变元既是简单合取式,又是简单析取式。把T看成简单合取式,它就构成了一个析取范式,类似的,把T 看成一个简单析取式,它就构成了一个合取范式。

因此这是一种特殊的范式。


总之,前束合取范式 <= 前束合取范式;前束析取范式 <= 前束析取范式,

 【8】谓词演算的推理理论:

法一:直接证法

法二:间接证法

  • CP规则
  • 矛盾规则

 结尾

这8种题型,轻轻松松拿下!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1199954.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【算法每日一练]-单调队列,滑动窗口(保姆级教程 篇1) #滑动窗口 #求m区间的最小值 #理想的正方形 #切蛋糕

今天讲单调队列 目录 题目&#xff1a;滑动窗口 思路&#xff1a; 题目&#xff1a;求m区间的最小值​ 思路&#xff1a; 题目&#xff1a;理想的正方形 思路&#xff1a; 题目&#xff1a;切蛋糕 思路&#xff1a; 一共两种类型&#xff1a;一种是区间中的最值&…

代码随想录算法训练营第四十九天|121. 买卖股票的最佳时机、122. 买卖股票的最佳时机 II

第九章 动态规划part10 121. 买卖股票的最佳时机 给定一个数组 prices &#xff0c;它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。 你只能选择 某一天 买入这只股票&#xff0c;并选择在 未来的某一个不同的日子 卖出该股票。设计一个算法来计算你所能获取的最…

C语言证明一个偶数总能表示为两个素数之和。输入一个偶数并将其分解为两个素数

完整代码&#xff1a; // 一个偶数总能表示为两个素数之和。输入一个偶数并将其分解为两个素数#include<stdio.h>//判断一个数n是否为素数 int isPrimeNumber(int n){//1不是素数if (n1){return 0;}for (int i 2; i <(n/2); i){//当有n能被整除时&#xff0c;不是素…

吃透 Spring 系列—IOC部分

目录 ◆ 传统Javaweb开发的困惑 -传统Javaweb开发代码分析-用户模块 -传统Javaweb开发困惑及解决方案 ◆ IoC、DI和AOP思想提出 - IoC 控制反转思想的提出 - DI 依赖注入思想的提出 - AOP 面向切面思想的提出 - 框架概念的出现 - 思想、框架和编码关系 ◆ Spring框架…

UML软件建模软件StarUML mac中文版软件介绍

StarUML for mac是一款UML建模器&#xff0c;StarUML for mac提供了几个模版&#xff0c;帮助用户建立使用新的图表&#xff0c;是目前最流行的UML建模工具&#xff0c;给开发工作带来大大的便利。 StarUML mac软件介绍 StarUML 是一个流行的软件建模工具&#xff0c;用于创建…

[vuex] unknown mutation type: SET_SOURCE

项目中使用了vuex&#xff0c;并且以模块的形式分好之后。在调用的时候出现了以上问题 /*当我们commit的时候要注意要加上模块的名字 user是模块名称&#xff0c;SET_SOURCE是user模块中定义的方法 正确写法&#xff1a;*/ this.$store.commit("user/SET_SOURCE", th…

Java14新增特性

前言 前面的文章&#xff0c;我们对Java9、Java10、Java11、Java12 、Java13的特性进行了介绍&#xff0c;对应的文章如下 Java9新增特性 Java10新增特性 Java11新增特性 Java12新增特性 Java13新增特性 今天我们来一起看一下Java14这个版本的一些重要信息 版本介绍 Java 14…

自动泊车轨迹规划学习

1.基于6次多项式的自动泊车轨迹算法研究 针对常见的自动泊车系统无法躲避障碍物&#xff0c;以及轨迹的曲率不连续等问题进行了泊车轨迹算法的研究以及跟踪算法的设计。 针对低速自动泊车场景进行分析&#xff0c;建立符合对应场景下的车辆运动学模型以及能够泊车的最小车位大…

JavaWeb Day10 案例 准备工作

目录​​​​​​​ 一、需求说明 二、环境搭建 &#xff08;一&#xff09;数据库 &#xff08;二&#xff09;后端 ①controller层 1.DeptController.java 2.EmpController.java ②mapper层 1.DeptMapper.java 2.EmpMapper.java ③pojo层 1.Dept.java 2.Emp.jav…

数据库加密的常用方法 安当加密

数据库加密的方法主要有以下几种&#xff1a; 前置代理及加密网关技术&#xff1a;在数据库之前增加一道安全代理服务&#xff0c;对数据库访问的用户都必须经过该安全代理服务&#xff0c;在此服务中实现如数据加解密、存取控制等安全策略。加密数据存储在安全代理服务中。但…

S32K3基础学习 linker链接器脚本ld文件的学习(一)

一、简介 最近学习NXP新推出的S32K3系列芯片&#xff0c;我在学习容易转牛角尖&#xff0c;非得要搞明白这个芯片的启动流程&#xff0c;所以花费了一些时间&#xff0c;进行查阅资料进行学习&#xff0c;这里做下详细的记录&#xff0c;希望有用&#xff0c;如果有错误欢迎指正…

Springboot+vue的毕业生实习与就业管理系统(有报告)。Javaee项目,springboot vue前后端分离项目。

演示视频&#xff1a; Springbootvue的毕业生实习与就业管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot vue前后端分离项目 前些天发现了一个巨牛的人工智能学习网站&#xff0c;通俗易懂&#xff0c;风趣幽默&#xff0c;忍不住分享一下给大家。点…

dream_ready

&#x1f9f8;欢迎来到dream_ready的博客&#xff0c;&#x1f4dc;相信您对这篇博客也感兴趣o (ˉ▽ˉ&#xff1b;) Python 语法及入门 &#xff08;超全超详细&#xff09; 专为Python零基础 一篇博客让你完全掌握Python语法 路的尽头是什么&#xff1f;这是我年少时常伴在嘴…

Runway 最强竞品 Pika 1.0 预告来袭!文生视频效果堪比迪士尼动画!重新定义动画生成新范式!

作者 | 张雨霏、王二狗 Runway是AI生成视频赛道的绝对霸主吗&#xff1f; 不一定&#xff01; 就在这两天天&#xff0c;Pika在推特上官宣——Pika 1.0即将来袭&#xff01; 网友看到后都直呼 Amazing &#x1f929;&#xff01;Unexpected! &#x1f525; 还有网友表示未来…

路径总和[简单]

优质博文&#xff1a;IT-BLOG-CN 一、题目 给你二叉树的根节点root和一个表示目标和的整数targetSum。判断该树中是否存在 根节点到叶子节点的路径&#xff0c;这条路径上所有节点值相加等于目标和targetSum。如果存在&#xff0c;返回true&#xff1b;否则&#xff0c;返回fa…

2016年408计网

这一年&#xff0c;计算机网络部分的全部考题都围绕该网络拓扑图进行。 第33题 在 OSI 参考模型中, R1、Switch、Hub 实现的最高功能层分别是() A. 2、2、1 B. 2、2、2 C. 3、2、1 D. 3、2、2 本题考察路由器、以太网交换机、集线器各自实现的最高功能层是什么题目给定R1是…

王道 | 数据结构第一章

目录结构 章节总览 1.0 开篇_数据结构在学什么 1.1_1 数据结构的基本概念 1.1_2 数据结构的三要素 1.2_1 算法的基本概念 1.2_2 算法的时间复杂度 1.2_3 算法的空间复杂度 章节总览 1.0 开篇_数据结构在学什么 1.1_1 数据结构的基本概念 数据&#xff1a; 数据是信息的载…

Linux应用开发基础知识——LCD上的矢量字体Freetype(六)

前言&#xff1a; 使用 buildroot 来给 ARM 板编译程序、编译库会很简单&#xff0c;以后系统讲解 buildroot 时再使用 buildroot&#xff0c;现在我们还是手工交叉编译 freetype&#xff0c;这种方法在编译、安装一些小程序时很有用。 Freetype 是开源的字体引擎库&#xff0c…

文生图模型测评之HPS v2

文章目录 1. 简介2. HPD v22.1 相关数据集介绍2.2 HPD v2 的构建2.2.1 prompt collection2.2.2 image collection2.2.3 preference annotation3. Human Preference Score v23.1 构建模型3.2 实验结果4. 结论及局限性论文链接:Human Preference Score v2: A Solid Benchmark fo…

目标检测——Yolo系列(YOLOv1/2/v3/4/5/x/6/7/8)

目标检测概述 什么是目标检测&#xff1f; 滑动窗口&#xff08;Sliding Window&#xff09; 滑动窗口的效率问题和改进 滑动窗口的效率问题&#xff1a;计算成本很大 改进思路 1&#xff1a;使用启发式算法替换暴力遍历 例如 R-CNN&#xff0c;Fast R-CNN 中使用 Selectiv…