ByteBuf和ByteBuffer

news2024/11/26 22:19:47

一、背景简介

ByteBuf,顾名思义,就是字节缓冲区,是Netty中非常重要的一个组件。熟悉jdk NIO的同学应该知道ByteBuffer,正是因为jdk原生ByteBuffer使用比较复杂,某些场景下性能不是太好,netty开发团队重新设计了ByteBuf用以替代原生ByteBuffer。
 

二、ByteBuf和ByteBuffer对比

下面用图示来展示ByteBuf和ByteBuffer工作原理:

①、ByteBuffer

 ByteBuffer依靠flip()来切换模式,在读模式下调用flip()切换为写模式,在写模式下limit和capacity相等,position标识当前写的位置。在写模式下调用flip()切换为读模式,在读模式下position回到起始位置开始读,limit回到position位置表示能读到多少数据,capacity不变表示缓存区容量大小。

capacity:在读/写模式下都是固定的,就是缓冲区容量大小。

position:读/写位置指针,表示当前读(写)到什么位置。

limit:在写模式下表示最多能写入多少数据,此时和capacity相同。在读模式下表示最多能读多少数据,此时它的值等于缓存区中实际数据量的大小。
 

②、ByteBuf

ByteBuf主要是通过readerIndex 和 writerIndex两个指针进行数据的读和写,整个ByteBuf被这两个指针最多分成三个部分,分别是可丢弃部分,可读部分和可写部分

刚初始化的时候,整个缓冲区还没有数据,读写指针都指向0,所有的内容都是可写部分,此时还没有可读部分和可丢弃部分,如下:

 当写完N个字节数据后,读指针仍然是0,因为还没有开始进行读事件,写指针向后移动了N个字节的位置,如下:

 当开始读数据并且读取M个字节数据之后(M<N)写指针位置不变,读指针后移动了M个字节的位置,如下:

 当可丢弃部分数据被清空之后,readerindex重新回到起始位置,writerindex的位置为writerindex的值减去之前的readerindex,也就是M,相关图示如下:

 调用clear之后,writerindex和readerinde全部复位为0。它不会清除缓冲区内容(例如,用填充0),而只是清除两个指针。更改的读写指针的值,每个位置上原本的字节内容并没有发生改变,只是变成了可写状态而已。另请注意,此操作的语义不同于Buffer.clear()。

三、源码

明白了ByteBuf工作原理之后,ByteBuf相关的api就很好理解了,在此附上netty官方api文档,以供参阅:

https://netty.io/4.1/api/overview-summary.html。

我们在这里看下netty扩容相关源码逻辑。

扩容肯定是在写入数据的时候会由相关逻辑判断,我们随便进入一个写入字节的api方法。
 

public abstract ByteBuf writeBytes(byte[] src);

进入到其抽象子类AbstractByteBuf中。

 
  1. @Override

  2. public ByteBuf writeBytes(byte[] src) {

  3. writeBytes(src, 0, src.length);

  4. return this;

  5. }

  6. @Override

  7. public ByteBuf writeBytes(byte[] src, int srcIndex, int length) {

  8. ensureAccessible();

  9. ensureWritable(length);

  10. setBytes(writerIndex, src, srcIndex, length);

  11. writerIndex += length;

  12. return this;

  13. }

首先ensureAccessible进行安全校验,每种尝试访问缓冲区内容的方法都应调用此方法,以检查缓冲区是否已释放。然后ensureWritable判断是否可写,扩容相关逻辑就在这里进行判断,如果缓冲区可写执行setBytes进行数据写入,然后writerindex向后移动length的位置,最后将ByteBuf对象进行返回。我们重点看ensureWritable。

 
  1. @Override

  2. public ByteBuf ensureWritable(int minWritableBytes) {

  3. if (minWritableBytes < 0) {

  4. throw new IllegalArgumentException(String.format(

  5. "minWritableBytes: %d (expected: >= 0)", minWritableBytes));

  6. }

  7. ensureWritable0(minWritableBytes);

  8. return this;

  9. }

直接进入ensureWritable0(minWritableBytes)方法中,此时minWritableBytes就是我们计划需要申请的内存大小空间。

 
  1. private void ensureWritable0(int minWritableBytes) {

  2. // 安全检查,保证写入之前是可访问的

  3. //ensureAccessible();

  4. // 可写,不必扩容

  5. if (minWritableBytes <= writableBytes()) {

  6. return;

  7. }

  8. //下标越界

  9. if (minWritableBytes > maxCapacity - writerIndex) {

  10. throw new IndexOutOfBoundsException(String.format(

  11. "writerIndex(%d) + minWritableBytes(%d) exceeds maxCapacity(%d): %s",

  12. writerIndex, minWritableBytes, maxCapacity, this));

  13. }

  14. //达到临界条件,开始执行扩容逻辑

  15. // 计算新的容量,实际上为当前容量扩容至2的幂次方大小(具体是多少需要进行后续判断和计算)

  16. int newCapacity = alloc().calculateNewCapacity(writerIndex + minWritableBytes, maxCapacity);

  17. // 扩容后的容量

  18. capacity(newCapacity);

  19. }

可以看到真正开辟内存空间新容量逻辑处理的是 alloc().calculateNewCapacity(writerIndex + minWritableBytes, maxCapacity)执行的,进入到方法里面。

来到其实现类AbstractByteBufAllocator的calculateNewCapacity方法。

 
  1. @Override

  2. public int calculateNewCapacity(int minNewCapacity, int maxCapacity) {

  3. if (minNewCapacity < 0) {

  4. throw new IllegalArgumentException("minNewCapacity: " + minNewCapacity + " (expectd: 0+)");

  5. }

  6. if (minNewCapacity > maxCapacity) {

  7. throw new IllegalArgumentException(String.format(

  8. "minNewCapacity: %d (expected: not greater than maxCapacity(%d)",

  9. minNewCapacity, maxCapacity));

  10. }

  11. // 扩容的阈值,4兆字节大小

  12. final int threshold = 1048576 * 4;

  13. if (minNewCapacity == threshold) {

  14. return threshold;

  15. }

  16. //如果计划一共需要的内存容量大小大于阈值,则需要和最大容量j进行比较

  17. if (minNewCapacity > threshold) {

  18. int newCapacity = minNewCapacity / threshold * threshold;

  19. if (newCapacity + threshold > maxCapacity) {

  20. newCapacity = maxCapacity;

  21. } else {

  22. newCapacity += threshold;

  23. }

  24. return newCapacity;

  25. }

  26. //如果计划一共需要的内存容量大小小于阈值,则以64为基数进行倍增

  27. int newCapacity = 64;

  28. while (newCapacity < minNewCapacity) {

  29. newCapacity <<= 1;

  30. }

  31. return Math.min(newCapacity, maxCapacity);

  32. }

minNewCapacity是我们计划一共需要的内存容量大小,maxCapacity是最大缓冲区容量大小。首先判断minNewCapacity 是否小于零或者minNewCapacity 是否大于maxCapacity,满足任一都抛出异常信息,然后判断我们计划一共需要的内存容量大小minNewCapacity 是否等于了阈值4M:

①、如果等于了阈值,新容量大小就是阈值4M。

②、如果计划一共需要的内存容量大小大于阈值,则maxCapacity和minNewCapacity 相对于阈值的整数倍再加上一个阈值进行大小判断,如果大于maxCapacity,则新容量最大就是maxCapacity,返回maxCapacity,如果小于maxCapacity,则相当于按照阈值的2倍进行扩容。

③、如果计划一共需要的内存容量大小小于阈值,则以64为基数只要小于我们计划需要的内存容量大小,就2倍扩容,最后选取循环后的扩容值和最大值两个值其中的较小者。

至此扩容就完成了,总结来说就是在扩容过程中有一个扩容需要容量的一个阈值4M,如果我们需要的内存空间等于这个阈值,那么扩容后的容量就是阈值大小,如果我们需要的内存容量大小大于阈值或者小于阈值,其扩容逻辑判断和扩容后返回的容量大小是不同的。但是最终扩容后的容量大小总是2的幂次方大小并且不会比maxCapacity大。
 

4、ByteBuf主要的继承关系

从内存分配的角度看,ByteBuf可以分为两类

(1)堆内存(HeapByteBuf)字节缓冲区:特点是内存的分配和回收速度快,可以被JVM自动收回;缺点就是如果进行Socket的I/O读写,需要额外做一次内存复制,将堆内存对应的缓冲区复制到内核Chanenel中,性能会有一定程度的下降。

(2)直接内存(DirectByteBuf) 字节缓冲区:非堆内存,它在堆外进行内存分配,相比于堆内存,它的分配和回收速度会慢一些,但是将它写入或者从Socket Channel中读取时,由于少了一次内存复制,速度比堆内存快。

正式因为各有利弊,所以Netty提供了多种ByteBuf供开发者使用,经验表明,ByteBuf的最佳实践是在I/O通信线程的读写缓冲区使用DirectByteBuf,后端业务消息的编解码模块使用HeapByteBuf,这样组合可以达到性能最优。

从内存回收角度看,ByteBuf也可以分为两类:基于对象池的ByteBuf和普通ByteBuf。两者的主要区别就是基于对象池的ByteBuf可以重用ByteBuf对象,它自己维护了一个内存池,可以循环利用创建的ByteBuf,提升内存的使用效率,降低由于高负载导致的频繁GC。测试表名使用内存池后的Netty在高负载、大并发的冲击下内存和GC更加平稳。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1190618.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

QT QSplitter

分裂器QSplitter类提供了一个分裂器部件。和QBoxLayout类似&#xff0c;可以完成布局管理器的功能,但是包含在它里面的部件,默认是可以随着分裂器的大小变化而变化的。 比如一个按钮放在布局管理器中,它的垂直方向默认是不会被拉伸的,但是放到分裂器中就可以被拉伸。还有一点不…

多篇论文介绍-摘要

论文地址https://arxiv.org/pdf/2301.10051.pdf 目录 01CIEFRNet&#xff1a;面向高速公路的抛洒物检测算法 02改进 YOLOv5 的 PDC 钻头复合片缺损识别 03 基于SimAM注意力机制的DCN-YOLOv5水下目标检测 04 基于改进YOLOv7-tiny 算法的输电线路螺栓缺销检测 ​编辑05 基于改进Y…

jquery的项目,html页面使用vue3 +element Plus

vue3&#xff0c;element引入 <script src"../vue3.3.8/vue.global.js"></script> <link rel"stylesheet" href"js/elementPlus/index.css"> <script src"js/elementPlus/index.full.js"></script>…

Linux友人帐之网络编程基础NFS服务器

一、概述 1.1NFS基础概念 NFS服务器&#xff08;Network File System&#xff09;是一种网络文件系统协议&#xff0c;它允许不同计算机之间共享文件系统中的文件。它是一种专门用于在网络上共享文件和目录的服务器。NFS服务器可以把本地的文件系统目录通过网络共享给其它计算…

【C++】——类与对象(一)

&#x1f383;个人专栏&#xff1a; &#x1f42c; 算法设计与分析&#xff1a;算法设计与分析_IT闫的博客-CSDN博客 &#x1f433;Java基础&#xff1a;Java基础_IT闫的博客-CSDN博客 &#x1f40b;c语言&#xff1a;c语言_IT闫的博客-CSDN博客 &#x1f41f;MySQL&#xff1a…

Python tkinter实现复刻Windows记事本UI和菜单的文本编辑器(一)

下一篇&#xff1a;Python tkinter实现复刻Windows记事本UI和菜单的文本编辑器&#xff08;二&#xff09;-CSDN博客 介绍&#xff1a; Windows操作系统中自带了一款记事本应用程序&#xff0c;通常用于记录文字信息&#xff0c;具有简单文本编辑功能。Windows的记事本可以新…

LoadRunner脚本编写之二

下面来回顾一下嵌套循环例子。 Action() {int i,j; //生命两个变量for (i1;i<5;i) //第一重循环&#xff0c;循环5次{if (i3) break; //当i等于3时&#xff0c;跳出本重循环elselr_output_message("i%d",i); //否则&#xff0c;输入i的值for (j1;j<…

效率提升75%!要做矩阵号,更要做好矩阵号管理

在如今的信息数字化时代&#xff0c;面对竞争日趋激烈的市场&#xff0c;数字化转型成为了企业提高效率和竞争力、实现可持续发展的重要手段。 这一两年来&#xff0c;我们也发现&#xff0c;越来越多的品牌企业开始探索数字化转型的实践&#xff0c;通过使用自建或者采买的数据…

Spring Task定时任务框架

二十四、Spring Task 24.1 介绍 Spring Task 是Spring框架提供的任务调度工具&#xff0c;可以按照约定的时间自动执行某个代码逻辑。 定位&#xff1a;定时任务框架 作用&#xff1a;定时自动执行某段Java代码 为什么要在Java程序中使用Spring Task&#xff1f; 应用场景…

linux系统,确认账户密码正确

linux系统&#xff0c;确认账户密码正确 1、问题背景2、解决方法 1、问题背景 有时在linux系统安装软件时&#xff0c;有的软件可能会在安装过程中创建系统用户&#xff0c;同时会给出这个用户的密码。过了一段时间我们不确定这个密码是否还正确&#xff0c;那怎么确认这个密码…

大数据-玩转数据-Flume

一、Flume简介 Flume提供一个分布式的,可靠的,对大数据量的日志进行高效收集、聚集、移动的服务,Flume只能在Unix环境下运行。Flume基于流式架构,容错性强,也很灵活简单。Flume、Kafka用来实时进行数据收集,Spark、Flink用来实时处理数据,impala用来实时查询。二、Flume…

深度学习中的图像增强合集

引言 图像增强是我们在深度学习领域中绕不开的一个话题&#xff0c;本文我们将讨论什么是图像增强&#xff0c;并在三个不同的 python 库中实现它&#xff0c;即 Keras、Pytorch 和 augmentation&#xff08;专门用于图像增强的一个库&#xff09;。所以第一个问题就是什么是图…

基于Python的书籍数据采集与可视化分析系统

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长 Wechat / QQ 名片 :) 1. 项目简介 基于Python的书籍数据采集与可视化分析系统旨在挖掘和分析海量图书数据背后的规律和趋势&#xff0c;为读者、出版商和数据分析师提供更深入的洞察和辅助决策。本系统依托于某瓣庞大的图书…

UT代码编译至build文件夹

得克萨斯大学奥斯汀分校代码&#xff1a;代码文件按照网上很多的做法是直接**cmake .****make**则会出现以下的内容&#xff1a;但是这样做未免有些杂乱&#xff0c;会将编译生成的Makefile和其他数据文件全部存放在utaustinvilla3d-master下&#xff0c;比较杂乱。根据我们编译…

VINS-Mono-后端优化 (二:预积分残差雅可比推导)

文章目录 对位置 δ α \delta\alpha δα 进行求导位置误差 δ α \delta\alpha δα 对平移 P b k w P^{w}_{b_{k}} Pbk​w​ 的求导位置 δ α \delta\alpha δα 对旋转 R w b k R^{b_{k}}_{w} Rwbk​​ 进行求导 对速度 δ β \delta\beta δβ 进行求导速度 δ β…

你别说,还真好用,Apipost-IDEA插件

写完代码还得重复打字编写接口文档&#xff1f;代码量大定位接口定义方法太难找&#xff1f;麻烦&#xff01;写完代码还得复制粘贴到postman进行调试&#xff1f; 这三点太麻烦&#xff1f;今天给大家推荐一款IDEA插件&#xff0c;写完代码IDEA内一键生成API文档&#xff0c;…

Sui学术研究奖公布,资助研究者探索人工智能、能源市场和区块链游戏

Sui基金会高兴地宣布首轮Sui学术研究奖&#xff08;SARAs&#xff09;的获奖者。SARAs计划提供资助&#xff0c;支持推动Sui区块链技术的研究。学术和研究界对我们的初次征集呈现出大量高质量的提案。 已接受的九个提案涵盖了各种主题&#xff0c;如token经济学、智能合约机制…

Modbus协议简介及模拟环境搭建

Modbus协议是一种已广泛应用于当今工业控制领域的通用通讯协议&#xff0c;Modbus 是MODICON公司&#xff08;现为施耐德电气公司的一个品牌&#xff09;最先倡导的一种软的通讯规约。 通过此协议&#xff0c;控制器相互之间、或控制器经由网络(如以太网)可以和其它设备之间进…

Kakao账号如何注册使用?如何Kakao多开?外贸必备全面教程

Kakao是目前韩国地区最流行的通讯生活服务软件&#xff0c;相当于我们国内的微信&#xff0c;如果您的业务正准备或者正在进军这个区域&#xff0c;那么少不了需要注册并使用这个平台&#xff0c;甚至需要Kakao多开&#xff08;多账号同时管理与使用&#xff09;&#xff0c;本…

Linux mx6ull-驱动(1)hello

编写第一个驱动&#xff0c;hello_drv 一、获取内核、编译内核。 这里为什么要获取内核呢&#xff0c;因为我们写的是驱动程序&#xff0c;而不是裸机程序。也就是我们的板子已经烧入进去了uboot、内核&#xff0c;根文件。然后我们要在这个板子的内核的基础上&#xff0c;来…