下面来回顾一下嵌套循环例子。
Action()
{
int i,j; //生命两个变量
for (i=1;i<=5;i++) //第一重循环,循环5次
{
if (i==3)
break; //当i等于3时,跳出本重循环
else
lr_output_message("i=%d",i); //否则,输入i的值
for (j=1;j<=5;j++) //第二重循环,循环5次
{
if (j==2)
break; //当j等于2时,跳出本重循环
else
lr_output_message("j=%d",j); //否则,输入j的值
}
}
}
上面的代码中我加了注释,这里就不用再解释。
运行结果:
Starting iteration 1.
Starting action Action.
Action.c(9): i=1
Action.c(16): j=1
Action.c(9): i=2
Action.c(16): j=1
Ending action Action.
Ending iteration 1.
如果你想学习性能测试,我这边给你推荐一套视频,这个视频可以说是B站播放全网第一的自动化测试教程,同时在线人数到达1000人,并且还有笔记可以领取及各路大神技术交流:798478386
15天学会性能测试,通俗易懂详细教学,Jmeter性能测试实战(集群压测,全链路压测,性能调优,瓶颈分析)极速掌握,干就完事!_哔哩哔哩_bilibili15天学会性能测试,通俗易懂详细教学,Jmeter性能测试实战(集群压测,全链路压测,性能调优,瓶颈分析)极速掌握,干就完事!共计27条视频,包括:1.【性能测试】什么是性能测试以及性能测试的价值和目的、2.【性能测试】真实企业性能测试指标详解以及指标测算、3.【性能测试】真实企业中性能测试流程以及细节剖析等,UP主更多精彩视频,请关注UP账号。https://www.bilibili.com/video/BV1B14y1D7X9/?spm_id_from=333.337.search-card.all.click
函数
函数,通常 一小段C语言程序仅有一个main()函数组成。然而,在实际编写应用程序中,需要开发人员编写大量的用户自定交函数,不仅要在程序中定义函数本身,而且在主调函数模块中还必须对该被调函数进行类型说明,然后才能使用,与用户自定义函数相对应的是函数库,C语言集成开发环境(IDE)提供,我们只要调用就是行了。就就所谓前人种树,后人乘凉,不然看似一个简单的东西,寻其源头来做,都是一个相当复杂的过程。
void SsyHello() //打招呼函数
{
lr_output_message("hello %s",lr_get_host_name());
}
int GetBigger(int x,int y) //得到最大值函数
{
if (x>y) {
return x;
}
else{
return y;
}
}
Action(){
int x=10,y=20, result; //声明变量
SsyHello(); //无形参,无返回值函数
result = GetBigger(x,y);
lr_output_message("GetBigger(%d,%d)=%d",x,y,result); //带形参,带返回值函数
return 0;
}
上面的程序加注解了,简单来说就是前面定义了两个函数SsyHello() 和 GetBigger(),主函数Action()对前面两个函数进行调用。
运行结果:
Starting iteration 1.
Starting action Action.
Action.c(4): hello 2011-20120624YO
Action.c(23): GetBigger(10,20)=20
Ending action Action.
Ending iteration 1.
动态存储方式与静态存储方式
我们在定义变量是,根据定义的位置不同,分为全局变量与局部变量。我出生在一个叫“舞阳”的小县城,在这个县城中也有人名“舞阳”,前一个作用于整个县城,后一个只作用于他个人。那么从变量值的存在生存期角度,又可分为静态存储方式和动态存储方式两类。
静态存储方式:是指在程序运行期间分配固定的存储空间方式。
动态存储方式:是在程序运行期间根据需要进行动态的分配存储空间的方式。
用户存储空间可分三部分:
1、程序区
2、静态存储区
3、动态存储区
全局变量全部存放在静态存储区,在程序开始执行时给全局变量分配存储区,程序运行完毕就释放,在程序执行过程中它们占据固定的存储单元,而不动态地进行分配和释放。
动态存储区存放以下数据:
(1)函数形式参数
(2)自动变量(未加static声明的局部变量)
(3)函数调用时的现场保护和返回地址
上面这些数据,在函数开始调用时分配动态空间,函数结果时释放这些空间。
在C语言中,每个变量和函数有两个属性:数据类型和数据的存储类别
* 自动(auto)变量
函数中的局部变量,如不专门的声明为static存储类别,都是动态地分配存储空间的。
* 静态(static)声明局部变量
有时希望函数中的局部变量的值在函数调用结束后不消失而保留,这时就应该指定局部变量为“静态局部变量”,用static关键字。
* 寄存器(register)变量
为了提高效率,C语言允许把局部变量的值放在CPU中的寄存器中,这种变量叫“寄存器变量”,用关键字register变量。
static int c;
int prime(register int number) //判断是否为素数
{
register int flag=1;
auto int n;
for (n=2;n<number/2 && flag==1;n++) {
if (number % n==0) flag=0;
return(flag);
}
}
demo(int a) //static、auto变量的演示函数
{
auto int b=0;
int d;
static c=3;
b=b+1;
c=c+1;
lr_output_message("demo()函数中的d=%d",d);
lr_output_message("demo()函数中的static c=%d",c);
return a+b+c;
}
Action(){
int a=2,i; //变量声明
for (i=0;i<3;i++) {
lr_output_message("demo()函数部分第%d运行情况如下:",i+1);
lr_output_message("函数demo运行结果为:%d",demo(a));
lr_output_message("-------------------\n\r");
}
//判断13是否为素数,并输出提示信息
if (prime(13)==0)
lr_output_message("13不是素数!");
else
lr_output_message("13是素数!");
lr_output_message("c=%d",c); //输入变理的值
return 0;
}
素数:指大于1的自然数,除了1和它本身不能被其它数整除的数。prime()函数部分主要用来判断传入的数是否是素数。
demo()函数用来做static和auto类型的变量演示。Action()函数用于调用与输入结果。
运行结果:
Starting iteration 1.
Starting action Action.
Action.c(31): demo()函数部分第1运行情况如下:
Action.c(22): demo()函数中的d=51446257
Action.c(23): demo()函数中的static c=4
Action.c(32): 函数demo运行结果为:7
Action.c(33): -------------------
Action.c(31): demo()函数部分第2运行情况如下:
Action.c(22): demo()函数中的d=51446257
Action.c(23): demo()函数中的static c=5
Action.c(32): 函数demo运行结果为:8
Action.c(33): -------------------
Action.c(31): demo()函数部分第3运行情况如下:
Action.c(22): demo()函数中的d=51446257
Action.c(23): demo()函数中的static c=6
Action.c(32): 函数demo运行结果为:9
Action.c(33): -------------------
Action.c(40): 13是素数!
Action.c(42): c=0
Ending action Action.
Ending iteration 1.
指针
指针是C语言中广泛使用的一种数据类型,指针可以使我们的程序变得非常灵活,但也让不少程序员头痛,一不小心就会使程序出错。
指针一般指向一个函数或一个变量。在使用一个指针时,一个程序既可以直接使用这个指针所储存的内存地址,又可以使用这个地址里储存的变量或函数的值。
有一本很厚小说,为了便于读者找到某一段内容,我们会给某一段内容起一个小标题并标注上页数。这样找起来就非常方便了。那在内存中,小标题页数就相当于内存单元的指针,具体的小说内容就是内存单元的内容。
Action(){
int score[5]={100,98,78,55}; //一维数组
int *p=score; //一维数组指针
int sixnum[2][3]={{1,2,3},{4,5,6}}; //二维数组
int (*p1)[3]; //二维数组指针
int i,j; //定义两个变量
for (i=0;i<=4;i++) {
lr_output_message("score[%d]=%d",i,score[i]); //以下标形式标识数组
lr_output_message("*(p++)=%d",*(p++)); //以指针方式输出数组
}
lr_output_message("--------------------------");
p=score;
for (i=0;i<=4;i++) {
lr_output_message("score[%d]=%d",i,score[i]); //以下标形式标识数组
lr_output_message("*(p+%d)=%d",*(p+i)); //以指针方式输出数组
}
lr_output_message("--------------------------");
p1=sixnum;
for (i=0;i<=1;i++) {
for (j=0;j<=2;j++) {
lr_output_message("sixnum[%d][%d]=%d",i,j,sixnum[i][j]); //以下标形式标识数组
lr_output_message("*(*(p1+%d)+%d)=%d",*(*(p1+i)+j)); //以指针方式输出数组
}
}
return 0;
}
运行结果:
Starting iteration 1.
Starting action Action.
Action.c(11): score[0]=100
Action.c(12): *(p++)=100
Action.c(11): score[1]=98
Action.c(12): *(p++)=98
Action.c(11): score[2]=78
Action.c(12): *(p++)=78
Action.c(11): score[3]=55
Action.c(12): *(p++)=55
Action.c(11): score[4]=0
Action.c(12): *(p++)=0
Action.c(14): --------------------------
Action.c(18): score[0]=100
Action.c(19): *(p+100)=0
Action.c(18): score[1]=98
Action.c(19): *(p+98)=0
Action.c(18): score[2]=78
Action.c(19): *(p+78)=0
Action.c(18): score[3]=55
Action.c(19): *(p+55)=0
Action.c(18): score[4]=0
Action.c(19): *(p+0)=0
Action.c(21): --------------------------
Action.c(26): sixnum[0][0]=1
Action.c(27): *(*(p1+1)+0)=54385392
Action.c(26): sixnum[0][1]=2
Action.c(27): *(*(p1+2)+0)=54385392
Action.c(26): sixnum[0][2]=3
Action.c(27): *(*(p1+3)+0)=54385392
Action.c(26): sixnum[1][0]=4
Action.c(27): *(*(p1+4)+0)=54385392
Action.c(26): sixnum[1][1]=5
Action.c(27): *(*(p1+5)+0)=54385392
Action.c(26): sixnum[1][2]=6
Action.c(27): *(*(p1+6)+0)=54385392
Ending action Action.
Ending iteration 1.