VINS-Mono-后端优化 (二:预积分残差雅可比推导)

news2024/11/26 23:37:38


这里是求预积分对约束的参数块进行求导,有这个雅可比矩阵才能进行优化步长的计算,这个是预积分这个约束因子对各个优化变量的求导,后面还有相机的观测

残差块中的 θ \theta θ 是3维的,但是参数块中的四元数是4维的,因为相减后残差只剩虚部了,但是参数是从4个参数变过来的

预积分的残差具体如下,总共有15维的自由度,即y有15维
在这里插入图片描述
而参数块 x x x , 维护的是 k k k k + 1 k+1 k+1 时刻的 P , Q , V , B a , B g P,Q,V,Ba,Bg P,Q,V,Ba,Bg
P是3维,Q是四元数有4维,因为是过参数化的形式,而 V , B a , B g V,Ba,Bg V,Ba,Bg 总共是9维的参数块
所以整个参数块 x x x 的大小为 7+9

残差对残差参数块的求导
[ ∂ e ∂ P k ∂ e ∂ V k ∂ e ∂ P k + 1 ∂ e ∂ V k + 1 ∂ e 1 ∂ P k ∂ e 1 ∂ V k ∂ e 1 ∂ P k + 1 ∂ e 1 ∂ V k + 1 ⋮ ] \begin{bmatrix} \frac{\partial e}{\partial P_{k}} &\frac{\partial e}{\partial V_{k}}&\frac{\partial e}{\partial P_{k+1}}&\frac{\partial e}{\partial V_{k+1}}\\ \frac{\partial e_{1}}{\partial P_{k}} &\frac{\partial e_{1}}{\partial V_{k}}&\frac{\partial e_{1}}{\partial P_{k+1}}&\frac{\partial e_{1}}{\partial V_{k+1}}\\ \vdots \end{bmatrix} PkePke1VkeVke1Pk+1ePk+1e1Vk+1eVk+1e1
这个矩阵有15行,因为误差矩阵 e e e 是15维的(残差分别是 α , β , θ , B a , B g 构成,各自都是 3 个维度 \alpha,\beta,\theta,B_{a},B_{g}构成,各自都是3个维度 α,β,θ,Ba,Bg构成,各自都是3个维度),参数块 P P P 是7维,参数块 V V V 是9维
所以把这个雅可比矩阵分块成了 15 × 7 15×7 15×7 15 × 9 15×9 15×9 15 × 7 15×7 15×7 15 × 9 15×9 15×9 的形式
误差矩阵的维度和参数是不同的,求导就是对构成这个误差函数的里面的全部变量进行求导

由于我们维护的是 R w c R_{wc} Rwc ,所以我们的扰动是右乘的,十四讲里面维护的是 R c w R_{cw} Rcw 所以才使用左乘

对这个误差矩阵进行求导的时候,也可以按照误差参数块进行分别求导的,15=3*5,前三行雅可比使用位移的函数对 P k , V k , P k + 1 , V k + 1 P_{k},V_{k},P_{k+1},V_{k+1} Pk,Vk,Pk+1,Vk+1 进行求导

对位置 δ α \delta\alpha δα 进行求导

以下示例都是对 k k k 时刻的状态量进行求导, k + 1 k+1 k+1 时刻的同理
使用 δ α b k + 1 b k = … \delta\alpha^{b_{k}}_{b_{k+1}}=\dots δαbk+1bk= 分别对 P , Q , V , B a , B g P,Q,V,Ba,Bg P,Q,V,Ba,Bg 进行求导

位置误差 δ α \delta\alpha δα 对平移 P b k w P^{w}_{b_{k}} Pbkw 的求导

代码中的 Q i Q_{i} Qi R b k w R^{w}_{b_{k}} Rbkw ,所以代码中要取逆

∂ δ α b k + 1 b k ∂ P b k w = − R w b k \frac{\partial\delta\alpha^{b_{k}}_{b_{k+1}}}{\partial P^{w}_{b_{k}}}=-R^{b_{k}}_{w} Pbkwδαbk+1bk=Rwbk

位置 δ α \delta\alpha δα 对旋转 R w b k R^{b_{k}}_{w} Rwbk 进行求导

接下来是对旋转 R w b k R^{b_{k}}_{w} Rwbk 进行求导,由于代码中维护的是 R b k w R^{w}_{b_{k}} Rbkw ,所以这里的公式推导要取逆,方便代码的维护,这样是一个旋转方向的问题,如果直接左乘的话旋转方向就是反过来的了,这样操作的话旋转方向就是按照代码中维护的量的方向来进行操作

后面一串相乘后就是一个向量,当作向量 a a a
∂ δ α b k + 1 b k ∂ R w b k = l i m ϕ → 0 ( R b k w e x p ( ϕ ∧ ) ) − 1 ⋅ a − R w b k ⋅ a ϕ \frac{\partial\delta\alpha^{b_{k}}_{b_{k+1}}}{\partial R^{b_{k}}_{w}}=lim_{\phi\rightarrow0}\frac{(R^{w}_{b_{k}}exp(\phi^{\wedge}))^{-1}·a-R^{b_{k}}_{w}·a}{\phi} Rwbkδαbk+1bk=limϕ0ϕ(Rbkwexp(ϕ))1aRwbka

有公式 ( A ⋅ B ) − 1 = B − 1 ⋅ A − 1 (A·B)^{-1}=B^{-1}·A^{-1} (AB)1=B1A1
对旋转向量 ϕ \phi ϕ 取逆,相当于是换了一个旋转方向,所以 ϕ − 1 = − ϕ \phi^{-1}=-\phi ϕ1=ϕ
= ( I − ϕ ∧ ) R w b k ⋅ a − R w b k ⋅ a =(I-\phi^{\wedge})R^{b_{k}}_{w}·a-R^{b_{k}}_{w}·a =(Iϕ)RwbkaRwbka
= − ϕ ∧ ⋅ R w b k ⋅ a =-\phi^{\wedge}·R^{b_{k}}_{w}·a =ϕRwbka

叉乘有一个性质, a ⃗ × b ⃗ = − b ⃗ × a ⃗ \vec{a}×\vec{b}=-\vec{b}×\vec{a} a ×b =b ×a
a ⃗ × b ⃗ = a ∧ ⋅ b \vec{a}×\vec{b}=a^{\wedge}·b a ×b =ab
− b ⃗ × a ⃗ = − b ∧ ⋅ a -\vec{b}×\vec{a}=-b^{\wedge}·a b ×a =ba
a ∧ ⋅ b = − b ∧ ⋅ a a^{\wedge}·b=-b^{\wedge}·a ab=ba

则上面有
= ( R w b k ⋅ a ) ∧ ⋅ ϕ =(R^{b_{k}}_{w}·a)^{\wedge}·\phi =(Rwbka)ϕ

然后约掉分母上的 ϕ \phi ϕ
∂ δ α b k + 1 b k ∂ R w b k = ( R w b k ⋅ a ) ∧ \frac{\partial\delta\alpha^{b_{k}}_{b_{k+1}}}{\partial R^{b_{k}}_{w}}=(R^{b_{k}}_{w}·a)^{\wedge} Rwbkδαbk+1bk=(Rwbka)

对速度 δ β \delta\beta δβ 进行求导

也是使用 δ β b k + 1 b k = … \delta\beta^{b_{k}}_{b_{k+1}}=\dots δβbk+1bk= 分别对 P , Q , V , B a , B w P,Q,V,Ba,Bw P,Q,V,Ba,Bw 进行求导

速度 δ β \delta\beta δβ 对位置 P b k w P^{w}_{b_{k}} Pbkw 求导

由于公式里面不含位置,所以这块导数 = 0

速度 δ β \delta\beta δβ 对旋转 R w b k R^{b_{k}}_{w} Rwbk 求导

整体公式结构和上面的位移对旋转求导一致,所以求导结果也是 ( R w b k ⋅ a ) ∧ (R^{b_{k}}_{w}·a)^{\wedge} (Rwbka)

对旋转 δ θ \delta\theta δθ 进行求导

分别对 P , Q , V , B a , B g P,Q,V,Ba,Bg P,Q,V,Ba,Bg 进行求导

由于公式中不包含平移和速度量,所以对应的雅可比也为0
δ θ = 2 ⋅ ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w \delta\theta=2·(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} δθ=2(γbk+1bk)1(qbkw)1qbk+1w
k对应代码中的 i ,k+1对应代码中的 j

旋转 δ θ \delta\theta δθ q b k w q^{w}_{b_{k}} qbkw 进行求导

就是在右边加一个扰动,扰动为 [ 1   θ 2 ] T [1 \ \frac{\theta}{2}]^{T} [1 2θ]T
∂ δ θ ∂ q b k w = ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ⊗ [ 1 θ 2 ] ) − 1 ⊗ q b k + 1 w − ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w θ \frac{\partial \delta\theta}{\partial q^{w}_{b_{k}}}=\frac{(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}}\otimes\begin{bmatrix}1\\\frac{\theta}{2} \end{bmatrix})^{-1}\otimes q^{w}_{b_{k+1}}-(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}}}{\theta} qbkwδθ=θ(γbk+1bk)1(qbkw[12θ])1qbk+1w(γbk+1bk)1(qbkw)1qbk+1w

把逆乘进去,对于扰动那里其实就是把虚部 n ⃗ \vec n n 变一个旋转方向,所以是取个负号
= ( γ b k + 1 b k ) − 1 ⊗ [ 1 − θ 2 ] ⊗ q b k w − 1 ⊗ q b k + 1 w − ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w =(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes\begin{bmatrix}1\\-\frac{\theta}{2} \end{bmatrix}\otimes q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}-(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} =(γbk+1bk)1[12θ]qbkw1qbk+1w(γbk+1bk)1(qbkw)1qbk+1w

这里会用一个四元数的性质
a ⊗ b = [ a ] L ⋅ b = [ b ] R ⋅ a a\otimes b=[a]_{L}·b=[b]_{R}·a ab=[a]Lb=[b]Ra
具体看这篇文章讲解VINS-Mono-IMU预积分 (二:连续时间的PVQ积分+四元数求导)

公式变成
= 2 [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ [ ( γ b k + 1 b k ) − 1 ] L ⋅ [ 1 − θ 2 ] ] − [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ [ ( γ b k + 1 b k ) − 1 ] L ⋅ [ 1 0 ⋮ ] ] =2[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·\begin{bmatrix}[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L}·\begin{bmatrix}1\\-\frac{\theta}{2} \end{bmatrix}\end{bmatrix}-[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·\begin{bmatrix}[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L}·\begin{bmatrix}1\\ 0 \\\vdots \end{bmatrix}\end{bmatrix} =2[qbkw1qbk+1w]R[[(γbk+1bk)1]L[12θ]][qbkw1qbk+1w]R [(γbk+1bk)1]L 10
= 2 [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ ( γ b k + 1 b k ) − 1 ] L ⋅ [ [ 1 − θ 2 ] − [ 1 0 ⋮ ] ] =2[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L}·\begin{bmatrix} \begin{bmatrix}1\\-\frac{\theta}{2} \end{bmatrix} - \begin{bmatrix}1\\ 0 \\\vdots \end{bmatrix}\end{bmatrix} =2[qbkw1qbk+1w]R[(γbk+1bk)1]L [12θ] 10
= [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ ( γ b k + 1 b k ) − 1 ] L ⋅ [ 0 − θ ] x y z θ =\frac{[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L}· \begin{bmatrix}0\\-\theta \end{bmatrix}_{xyz}}{\theta} =θ[qbkw1qbk+1w]R[(γbk+1bk)1]L[0θ]xyz

θ \theta θ 约掉

= − [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ ( γ b k + 1 b k ) − 1 ] L =-[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L} =[qbkw1qbk+1w]R[(γbk+1bk)1]L

这里乘完后的结果只有四元数的虚部 x y z xyz xyz
所以把四元数进行矩阵化的公式会有点变动
原本的
[ q ] L = q w ⋅ I + [ 0 − q T q q × ] [q]_{L}=q_{w}·I+\begin{bmatrix}0&-q^{T}\\q&q_{×} \end{bmatrix} [q]L=qwI+[0qqTq×]
[ q ] R = q w ⋅ I + [ 0 − q T q − q × ] [q]_{R}=q_{w}·I+\begin{bmatrix}0&-q^{T}\\q&-q_{×} \end{bmatrix} [q]R=qwI+[0qqTq×]
当只取虚部的时候
[ q ] L = q w ⋅ I + q × [q]_{L}=q_{w}·I+q_{×} [q]L=qwI+q×
[ q ] R = q w ⋅ I − q × [q]_{R}=q_{w}·I-q_{×} [q]R=qwIq×

对于一个四元数取逆的时候
q = [ c o s θ 2 n ⃗ ⋅ s i n θ 2 ] q=\begin{bmatrix}cos\frac{\theta}{2}\\\vec n·sin\frac{\theta}{2}\end{bmatrix} q=[cos2θn sin2θ]
其实就是把旋转轴的方向换成反方向,实部是不变的,只有虚部会反方向
q − 1 = [ c o s θ 2 − n ⃗ ⋅ s i n θ 2 ] q^{-1}=\begin{bmatrix}cos\frac{\theta}{2}\\-\vec n·sin\frac{\theta}{2}\end{bmatrix} q1=[cos2θn sin2θ]

[ q − 1 ] L = q w ⋅ I − q × = [ q ] R [q^{-1}]_{L}=q_{w}·I-q_{×}=[q]_{R} [q1]L=qwIq×=[q]R
[ q − 1 ] R = q w ⋅ I + q × = [ q ] L [q^{-1}]_{R}=q_{w}·I+q_{×}=[q]_{L} [q1]R=qwI+q×=[q]L

我们推导的公式是这样的
= − [ q b k w − 1 ⊗ q b k + 1 w ] R ⋅ [ ( γ b k + 1 b k ) − 1 ] L =-[q^{w-1}_{b_{k}}\otimes q^{w}_{b_{k+1}}]_{R}·[(\gamma^{b_{k}}_{b_{k+1}})^{-1}]_{L} =[qbkw1qbk+1w]R[(γbk+1bk)1]L

代码中用了上面的变换关系,代码中的公式是这样的
其实就是对四元数取个逆就可以进行左右乘矩阵的变换

= − [ q b k + 1 w − 1 ⊗ q b k w ] L ⋅ [ ( γ b k + 1 b k ) ] R =-[q^{w-1}_{b_{k+1}}\otimes q^{w}_{b_{k}}]_{L}·[(\gamma^{b_{k}}_{b_{k+1}})]_{R} =[qbk+1w1qbkw]L[(γbk+1bk)]R

γ \gamma γ 是预积分量来的
在计算这个雅可比前也还是会用实时修正的零偏对预积分量进行调整,调整后才进入雅可比的计算

对零偏进行求导

上面的公式中没有包含零偏的项,这里要用到预积分一阶近似更新公式
在这里插入图片描述
用这个近似公式代替前面的预积分,再对零偏进行求导

平移 δ α \delta\alpha δα 对 k/i 时刻的 b a 、 b w b_{a}、b_{w} babw的扰动

其实就是对预积分量进行一个扰动,此时预积分量前面的参数都等于是常数直接为0
公式为
− [ ( α ^ b k + 1 b k + J b a α Δ b a ) − α b k + 1 b k ] Δ b a = − J b a α \frac{-[(\hat \alpha^{b_{k}}_{b_{k+1}}+J^{\alpha}_{b_{a}}\Delta b_{a})-\alpha^{b_{k}}_{b_{k+1}}]}{\Delta b_{a}}=-J^{\alpha}_{b_{a}} Δba[(α^bk+1bk+JbaαΔba)αbk+1bk]=Jbaα

b g b_{g} bg 求导也是同理的, α 和 β 都是一样的建模方式 \alpha 和 \beta 都是一样的建模方式 αβ都是一样的建模方式,结果也是一样的
上面是对 i / k 时刻的零偏的求导,这里的零偏也是第 i 时刻的

δ b a \delta b_{a} δba 对 i时刻ba的求导就是 − I -I I b g b_{g} bg 同理

由于预积分量中零偏的建模中都是假设零偏与 k k k 时刻有关,与 k + 1 k+1 k+1 时刻无关的,因为假设预积分过程中零偏是不会变的,虽然有联合优化零偏,但是零偏是通过一阶近似的方式加入到第 k k k 时刻的零偏中,所以 α , β , θ \alpha,\beta,\theta α,β,θ 对于 k + 1 k+1 k+1 时刻的零偏求导都是 0

θ \theta θ 对陀螺仪零偏求导

2 ( γ b k + 1 b k [ 1 1 2 J b w γ δ b w k ] ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w − 2 ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w 2(\gamma^{b_{k}}_{b_{k+1}}\begin{bmatrix}1\\\frac{1}{2}J^{\gamma}_{b_{w}}\delta b_{w_{k}} \end{bmatrix})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}}-2(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} 2(γbk+1bk[121Jbwγδbwk])1(qbkw)1qbk+1w2(γbk+1bk)1(qbkw)1qbk+1w

解开逆
= 2 [ 1 − 1 2 J b w γ δ b w k ] ⊗ ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w − 2 ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w =2\begin{bmatrix}1\\-\frac{1}{2}J^{\gamma}_{b_{w}}\delta b_{w_{k}} \end{bmatrix}\otimes(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}}-2(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} =2[121Jbwγδbwk](γbk+1bk)1(qbkw)1qbk+1w2(γbk+1bk)1(qbkw)1qbk+1w

= [ 0 − J b w γ δ b w k ] ⊗ ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w =\begin{bmatrix}0\\-J^{\gamma}_{b_{w}}\delta b_{w_{k}} \end{bmatrix}\otimes(\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} =[0Jbwγδbwk](γbk+1bk)1(qbkw)1qbk+1w

= [ ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w ] R ⋅ [ 0 − J b w γ δ b w k ] ∂ b w k =\frac{\begin{bmatrix} (\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} \end{bmatrix}_{R}·\begin{bmatrix}0\\-J^{\gamma}_{b_{w}}\delta b_{w_{k}} \end{bmatrix}}{\partial b_{w_{k}}} =bwk[(γbk+1bk)1(qbkw)1qbk+1w]R[0Jbwγδbwk]

约掉 b w k b_{w_{k}} bwk
= [ ( γ b k + 1 b k ) − 1 ⊗ ( q b k w ) − 1 ⊗ q b k + 1 w ] R ⋅ − J b w γ =\begin{bmatrix} (\gamma^{b_{k}}_{b_{k+1}})^{-1}\otimes(q^{w}_{b_{k}})^{-1}\otimes q^{w}_{b_{k+1}} \end{bmatrix}_{R}·-J^{\gamma}_{b_{w}} =[(γbk+1bk)1(qbkw)1qbk+1w]RJbwγ

= − [ ( ⊗ q b k + 1 w ) − 1 ⊗ q b k w ⊗ γ b k + 1 b k ] L ⋅ J b w γ =-\begin{bmatrix} (\otimes q^{w}_{b_{k+1}})^{-1}\otimes q^{w}_{b_{k}}\otimes \gamma^{b_{k}}_{b_{k+1}} \end{bmatrix}_{L}·J^{\gamma}_{b_{w}} =[(qbk+1w)1qbkwγbk+1bk]LJbwγ

最后这样的形式就和代码中的公式一致了

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1190587.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

你别说,还真好用,Apipost-IDEA插件

写完代码还得重复打字编写接口文档?代码量大定位接口定义方法太难找?麻烦!写完代码还得复制粘贴到postman进行调试? 这三点太麻烦?今天给大家推荐一款IDEA插件,写完代码IDEA内一键生成API文档,…

Sui学术研究奖公布,资助研究者探索人工智能、能源市场和区块链游戏

Sui基金会高兴地宣布首轮Sui学术研究奖(SARAs)的获奖者。SARAs计划提供资助,支持推动Sui区块链技术的研究。学术和研究界对我们的初次征集呈现出大量高质量的提案。 已接受的九个提案涵盖了各种主题,如token经济学、智能合约机制…

Modbus协议简介及模拟环境搭建

Modbus协议是一种已广泛应用于当今工业控制领域的通用通讯协议,Modbus 是MODICON公司(现为施耐德电气公司的一个品牌)最先倡导的一种软的通讯规约。 通过此协议,控制器相互之间、或控制器经由网络(如以太网)可以和其它设备之间进…

Kakao账号如何注册使用?如何Kakao多开?外贸必备全面教程

Kakao是目前韩国地区最流行的通讯生活服务软件,相当于我们国内的微信,如果您的业务正准备或者正在进军这个区域,那么少不了需要注册并使用这个平台,甚至需要Kakao多开(多账号同时管理与使用),本…

Linux mx6ull-驱动(1)hello

编写第一个驱动,hello_drv 一、获取内核、编译内核。 这里为什么要获取内核呢,因为我们写的是驱动程序,而不是裸机程序。也就是我们的板子已经烧入进去了uboot、内核,根文件。然后我们要在这个板子的内核的基础上,来…

2023-11-09 node.js-有意思的项目-记录

摘要: 2023-11-09 node.js-有意思的项目-记录 记录: 1、 NodeBB Star: 13.3k 一个基于Node.js的现代化社区论坛软件,具有快速、可扩展、易于使用和灵活的特点。它支持多种数据库,包括MongoDB、Redis和PostgreSQL,并且可以轻松地进行自定义…

软件测试|MySQL LIKE:深入了解模糊查询

简介 在数据库查询中,模糊查询是一种强大的技术,可以用来搜索与指定模式匹配的数据。MySQL数据库提供了一个灵活而强大的LIKE操作符,使得模糊查询变得简单和高效。本文将详细介绍MySQL中的LIKE操作符以及它的用法,并通过示例演示…

Linux系统环境变量

Linux系统环境变量 1. 环境变量1.1 定义环境变量1.2 使用环境变量 2. 环境变量作用2.1 PATH 3. 设置环境变量3.1 设置系统级环境变量3.2 设置用户级环境变量3.3 设置临时环境变量 1. 环境变量 在Linux系统中,常用的关键信息以键值对(KeyValue&#xff09…

第四章:人工智能深度学习教程-激活函数(第二节-ANN 中激活函数的类型)

生物神经网络以人工神经网络的形式建模, 其中人工神经元模拟生物神经元的功能。人工神经元如下图所示: 人工神经元的结构 每个神经元由三个主要部分组成: 一组“i”个突触,其权重为 w i。信号 x i形成具有权重 w i的第 i 个突触的…

关于稳定扩散最详细的介绍

推荐基于稳定扩散(stable diffusion) AI 模型开发的自动纹理工具: DreamTexture.js自动纹理化开发包 - NSDT Stable Diffusion 用途广泛,因为它可以以多种不同的方式使用。首先,让我们关注仅从文本 (text2img) 生成图像…

“箭在弦上”的边缘计算,更需要冷静和智慧

AI大模型、云游戏、自动驾驶、工业互联网等新一代数字技术,会给各行各业和社会经济生活带来巨大改善,这是大家都知道的。 要实现我们所期待的产业变化,一个完整的AI计算架构应该是:云侧端侧边缘侧,进行高效有序的协同。…

Mysql数据库 12.SQL语言 触发器

一、触发器&#xff08;操作日志表&#xff09; 1.介绍 不需要主动调用的一种储存过程&#xff0c;是一个能够完成特定过程&#xff0c;存储在数据库服务器上的SQL片段。 对当前表中数据增删改查的一种记录<日志表>&#xff0c;根据触发器自动执行&#xff0c;记录当前…

【阿里云】任务2-OSS对象存储教程(找我参加活动可获得京东卡奖励)

目录 前言说明第一步第二步第三步&#xff1a;开通并使用OSS传输加速三、清理第四步-提交作品第五步-提交记录到小程序 前言 本次任务是阿里云官方发出的&#xff0c;每个任务30软妹币&#xff0c;欢迎大家加入我的活动群&#xff0c;门槛很低&#xff0c;所有人都可以参加&…

kkFileView getCorsFile 任意文件读取漏洞(CVE-2021-43734)

kkFileView getCorsFile 任意文件读取漏洞 &#xff08;CVE-2021-43734&#xff09; 免责声明漏洞描述漏洞影响漏洞危害网络测绘Fofa: body"kkFileView" 漏洞复现1. 构造poc2. 读取文件 免责声明 仅用于技术交流,目的是向相关安全人员展示漏洞利用方式,以便更好地提…

用于汽车主驱逆变器的NVVR26A120M1WST、NVVR26A120M1WSS、NVVR26A120M1WSB 1200V、碳化硅(SiC)模块

碳化硅&#xff08;SiC&#xff09;模块 – EliteSiC主驱逆变器功率模块 1200V&#xff0c;半桥&#xff0c;介绍 1、&#xff08;NVVR26A120M1WST&#xff09;功率模块是用于混合动力车&#xff08;HEV&#xff09;和电动车&#xff08;EV&#xff09;主驱逆变器应用的VE-Tra…

​​​​​​​​​​​​​​汽车网络信息安全分析方法论

目录 1.典型信息安全分析方法 1.1 HEAVENS威胁分析模型 1.2 OCTAVE威胁分析方法 1.3 Attack Trees分析方法 2. 功能安全与信息安全的关系讨论 与Safety的典型分析方法一样&#xff0c;Security也有一些典型的信息安全威胁分析方法(TARA分析)&#xff0c;根据SAE J3061、I…

C++: 类和对象(下) (初始化列表, 隐式类型转换, static成员, 友元, 内部类, 匿名对象)

文章目录 一. 再谈构造函数1. 构造函数体赋值2. 初始化列表3. explitcit 关键字 二. static 成员1. 概念2. 特性声明静态成员使用类的静态成员定义静态成员 三. 友元1. 友元函数2. 友元类 四. 内部类五. 匿名对象 一. 再谈构造函数 1. 构造函数体赋值 在创建对象时, 编译器通过…

一张数学地图带你尽览数学分支

我们在学校学习的数学可能也只是数学领域的冰山一角&#xff0c;作为庞大而多样的学科&#xff0c;我今天将通过一张数学地图带你尽览数学分支。 本数学地图对应的视频讲解地址如下&#xff1a; https://www.youtube.com/watch?vOmJ-4B-mS-Y 另外&#xff0c;由于图片较大&a…

STM32中断简介

中断系统 中断&#xff1a;在主程序运行过程中&#xff0c;出现了特定的中断触发条件&#xff08;中断源&#xff09;&#xff0c;使得CPU暂停当前正在运行的程序&#xff0c;转而去处理中断程序&#xff0c;处理完成后又返回原来被暂停的位置继续运行&#xff1b; 以上是中断的…

【Linux】JREE项目部署与发布

目录 一.jdk安装配置 1.1.传入资源 1.2. 解压 1.3. 配置 二.Tomcat安装 2.1.解压开启 2.2. 开放端口 三.MySQL安装 3.1.解压安装 3.2.登入配置 四.后端部署 今天就到这里了哦&#xff01;&#xff01;希望能帮到你哦&#xff01;&#xff01;&#xff01; 一.jdk…