基于鹈鹕算法的无人机航迹规划-附代码

news2024/11/26 13:33:32

基于鹈鹕算法的无人机航迹规划

文章目录

  • 基于鹈鹕算法的无人机航迹规划
    • 1.鹈鹕搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用鹈鹕算法来优化无人机航迹规划。

1.鹈鹕搜索算法

鹈鹕算法原理请参考:https://blog.csdn.net/u011835903/article/details/124809854

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得鹈鹕搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用鹈鹕算法对航迹评价函数式(7)进行优化。优化结果如下:
在这里插入图片描述
在这里插入图片描述

从结果来看,鹈鹕算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1177698.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

x86汇编代码学习-计算机工作原理1

文章目录 前言1.CPU架构2.8086寄存器3. 指令流水线4.内存模型5.总线6.硬盘7 计算机启动过程BIOS8.BootLoader9.地址映射10.为什么boot loader要放在0x7c00这个位置?11 显卡是如何显示的12.汇编指令1.环境搭建 12 程序13 x86 汇编指令介绍 前言 x86汇编 详解x86汇编…

虚拟机联网 | 虚拟机连接Xshell

目录 一,打开网络虚拟编辑器二,打开网络设置三,最终设置四,测试有没有连上网五,测试连接工具Xshell 一,打开网络虚拟编辑器 1. 点击"编辑",打开"虚拟网络编译器" 2. 选择更…

SHEIN要求卖家完成德国EPR合规,逾期将强制下架——站斧浏览器

EPR是卖家在欧盟自由销售的通行证之一,如果没有,是不允许在欧盟国家销售产品的。 近期根据SHEIN官方邮件通知,卖家需要在收到邮件后5天内完成申报,逾期申报产品将会在德国站点下架。 因此,建议卖家尽快通过合规的服务…

第八章《搞懂算法:逻辑回归是怎么回事》笔记

8.1 如何理解逻辑回归 逻辑回归根据给定的自变量数据集来估计事件的发生概率,由于结果是一个概率,因此因变量的范围在 0 和 1 之间。 逻辑回归的与线性回归一样,也是以线性函数为基础的;而与线性回归不同的是,逻辑回…

智能安全配电装置在银行配电系统中的应用

【摘要】银行是国家重点安全保护部分,关系到社会资金的稳定,也是消防重点单位,消防安全保障工作是银行工作的重要方面。智能安全配电装置应用在银行配电系统中,可以提升银行智能化管控水平和有效防范电气火灾的发生。 【关键词】…

【QT】QT自定义C++类

在使用Qt的ui设计时,Qt为我们提供了标准的类,但是在很多复杂工程中,标准的类并不能满足所有的需求,这时就需要我们自定义C类。 下面以自定义的QPushButton作一个很简单的例子。 先新建默认Qt Widgets Application项目 一、自定义…

从传统货架到智能货架电子标签PTL仓储亮灯系统的革新

在现代物流仓储行业中,仓库的管理和物料的寻找一直是一个难题。仓库内物料数量种类繁多,寻找物料耗时长、困难大,盘点更是耗费人力多、成本高、速度慢。此外,货物存储位置不清晰,经常性找不到物料。多发、少发、错料现…

首个流体力学大模型背后,是昇腾的大模型“造林”逻辑

作者 | 曾响铃 文 | 响铃说 一个飞机模型在试验风洞里,空气从它的机翼与机身流过,形成一层又一层稳定的气流,当风速加快,空气的流线开始波浪式摆动,最终随着速度增大而相互混合、形成不再能分辨的湍流,看…

大模型的实践应用5-百川大模型(Baichuan-13B)的模型搭建与模型代码详细介绍,以及快速使用方法

大家好,我是微学AI,今天给大家介绍一下大模型的实践应用5-百川大模型(Baichuan-13B)的模型搭建与模型代码详细介绍,以及快速使用方法。 Baichuan-13B 是由百川智能继 Baichuan-7B 之后开发的包含 130 亿参数的开源可商用的大规模语言模型,在权威的中文和英文 benchmark 上均…

【寒武纪(3)】媒体处理系统的系统控制、视频输入和后处理子系统

系统控制 文章目录 系统控制1、配置视频缓存池Video Pool2、配置硬件IP为在线工作(不通过DDR数据交互)/ 离线工作(写入DDR)模式3、硬IP可以使用 非Video Block (VB)内存4、配置是否启动内存传递的压缩 视频…

Elasticsearch:搜索架构

Elasticsearch 全文检索的复杂性 为了理解为什么全文搜索是一个很难解决的问题,让我们想一个例子。 假设你正在托管一个博客发布网站,其中包含数亿甚至数十亿的博客文章,每个博客文章包含数百个单词,类似于 CSDN。 执行全文搜索…

c++-红黑树

文章目录 前言一、红黑树1、红黑树的概念2、红黑树的性质3、红黑树节点的定义4、红黑树结点插入4.1 情况1:cur为红,p为红,g为黑,存在且为红4.2 情况2:cur为红,p为红,g为黑,u不存在/u…

Unity之NetCode多人网络游戏联机对战教程(6)--NetworkTransform组件

文章目录 前言NetworkTransform是什么玩家移动脚本NetworkTransform字段讲解Synchronizing ("Syncing")ThresholdsLocal spaceInterpolationSlerp PositionUse Quaternion SynchronizationUse Quaternion CompressionUse Half Float PrecisionAuthority modesServer …

银河E8,吉利版Model 3:5米大车身、45寸大屏、首批8295座舱芯

作者 | Amy 编辑 | 德新 吉利银河E8在曝光后多次引爆热搜,李书福更是赞誉有加,称其为「买了就直接享受」。这款备受瞩目的车型于 10月30日晚首次亮相。 虽然新车外观在今年上海车展上早已曝光,但这次的发布会却带来了不少惊喜。新车架构以及…

pytorch安装1

用豆瓣源安装pytorch1.5.1(速度很快)-CSDN博客 详情请参考这位神仙的博客 我真的哭死,原来torch都安装好了,好不容易全部加载好了,但是,gpu配不上去,后来发现还是版本的问题版本不匹配具体版本…

Element对象_属性

Element对象对应网页的HTML元素。每一个HTML元素,在DOM树上都会转化成一个Element节点对象(以下简称元素节点) 1、Element.id Element.id属性返回指定元素的id属性,该属性可读写 2、Element.className className属性用来读写当前…

k8s 1.28安装

容器运行时,containerd 按照官方的指导,需要安装runc和cni插件,提示的安装方式,有三种: 二进制安装包源码apt-get 或 dnf安装 我们这里选用第三种,找到docker官方提供的安装方式 ubuntu-containerd # A…

rhcsa-文件内容显示

浏览普通文件内容 浏览文件的命令 命令常用选项说明cat -n 对输出内容中的所有行标注行号 -b 对输出内容中的非空行标注行号 查看文件的内容head-num 指定需要显示文件num行的内容默认查看文前十行的内容tail -num 指定需要显示文件num行的内容 -f 使tail不停的去读取显示文…

PHP保存时自动删除末尾的空格,phpstorm自动删除空白字符串

最近有个活儿,修改一个财务软件。 修改后给客户验收的过程中,客户反应有一个txt表格导出功能不能用了。之前是好的。 这次是新增,老的这个功能碰都没碰过,怎么能有问题呢?我心里OS 下班后我立马用系统导出TXT&#…

搜维尔科技:Movella Xsens和scalefit携手推进高精度人体工程学分析

Movella xsens是一家领先的传感器、软件和分析全栈提供商,致力于实现运动数字化和比例调整一家著名的人体工程学分析解决方案提供商,已联手重塑工作场所人体工程学。这项战略合作结合了先进技术和专业知识,以推进人体工程学评估并促进更健康、…