通过在Z平面放置零极点的来设计数字滤波器

news2024/11/27 16:37:41

文章来源地址:https://www.yii666.com/blog/393376.html

通过在Z平面放置零极点的来设计数字滤波器

要求:设计一款高通滤波器,用在音频信号处理过程中,滤掉100Hz以下的信号。

实现方法:通过在Z平面放置零极点的来设计数字滤波器。
设计要点:
单位圆上对应于需要加强频率的点附近放置极点,即w=π处附近落极点,需要拉低的频点附近放置零点,即w=0处附近落零点。为了滤波器的稳定,所有极点必须在单位圆内,而零点可以在任何位置。为了使滤波器系数是实数,所有的复数值的极点和零点必须以共轭的形式出现。
设计过程中需解决的问题:

  1. 模拟信号频率变量F(或Ω)和离散时间信号的频率变量f(或ω)之间的关系为:f = F/Fs ; 其中Fs为采样频率。因此若设计截止频率为100Hz的高通滤波器,采样频率16KHz时,则其在Z平面的对应值为π/80≈0.04。网址:yii666.com

  2. 简单高通滤波器的零极点位置有以下几种形式:(1)单极点单零点(2)双极点单零点(3)多极点多零点。为了降低滤波器频率特性对误差的敏感程度,不采用单极点、单零点的方式,因此选用方式3进行高通滤波器的设计。
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

  3. 滤波器在Z域由零极点表示的表达式如下:
    在这里插入图片描述
    其中,z=e^jw
    高通滤波器的幅频曲线中,w=0处,H(w)=0;w=π处,H(w)=1;
    初步假设高通滤波器所具有三个极点和两个零点:
    z1=0;z2=1;p1=-√3/2;p2=-√3/2+j1/2;p2=-√3/2-j1/2。
    将各零极点值带入到H(z)表达式中,并根据w=π时H(w)=1,可得出b0的值,再将H(z)写成多项式的形式,如下:
    在这里插入图片描述

此时,该多项式对应的时域差分方程为:
在这里插入图片描述

至此,该高通滤波器设计初步完成,但是并未使用到截止频率的相关信息,并且需使用matlab进行频域信息的验证,后续再进行探究。待验证完成后,便可添加到音频处理过程中,进行低频信号的过滤。

文章来源地址:https://www.yii666.com/blog/393376.html

基于matlab的零极点累试法滤波器设计 - 道客巴巴 (doc88.com)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1170256.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

(景行锐创) 高性能计算平台 Pytorch 深度学习环境超详细教程

文章目录 前言1. 账号申请2. 登录高算平台网站3. 安装 Xshell,Xftp 软件4. 连接高算平台5. 安装 Anaconda6. 安装 CUDA7. 配置 cuDNN8. 安装 torch 和 torchvision9. 提交作业测试10. 解压与压缩文件11. 其他结语 前言 目前一些学校为了便于师生进行大规模的计算任…

Aop自定义注解生成日志

Aop自定义注解生成日志 1.编写自定义注解 //表示此注解可以标注在方法上 Target(ElementType.METHOD) //运行时生效 Retention(RetentionPolicy.RUNTIME) public interface OpetionLog {//定义一个变量,可以接收参数String value() default "";}2.Cont…

Leetcode 剑指 Offer II 051. 二叉树中的最大路径和

题目难度: 困难 原题链接 今天继续更新 Leetcode 的剑指 Offer(专项突击版)系列, 大家在公众号 算法精选 里回复 剑指offer2 就能看到该系列当前连载的所有文章了, 记得关注哦~ 题目描述 路径 被定义为一条从树中任意节点出发,沿父节点-子节…

微信CRM系统在电商行业的应用

随着移动互联网的快速发展,微信已经成为电商行业重要的营销和客户服务渠道。然而,如何在海量的微信消息中保持客户沟通、提升客户体验、实现精准营销,是电商行业面临的一大挑战。微信CRM系统作为一种新型的客户关系管理工具,可以有…

【qemu逃逸】HWS2017-FastCP

前言 虚拟机用户名:root 虚拟机密码:无密码 本题有符号,所以对于设备定位啥的就不多说了,直接逆向设备吧。 设备逆向 在 realize 函数中设置一个时钟任务,并且可以看到只注册了 mmio,大小为 0x100000。…

Web应用多账号系统设计及微信扫码登录实现

1 前言概述 公司对功能测试,性能测试,安全测试等等都做了比较好的自动化后,急需要一个MIS系统来统一管理这些结果及报表。 此MIS系统特点如下: 仅内部人员使用部署在公网 基于如上特点,显然让公司的人为这样一个…

算法随想录算法训练营第四十九天| 503.下一个更大元素II 42. 接雨水

503.下一个更大元素II 题目:给定一个循环数组 nums ( nums[nums.length - 1] 的下一个元素是 nums[0] ),返回 nums 中每个元素的 下一个更大元素 。数字 x 的 下一个更大的元素 是按数组遍历顺序,这个数字之后的第一个…

mes生产管理系统| T-MES管理软件 智能制造 生产协同

思伟软件 T-MES管理软件 智能制造 生产协同 智能制造协同管理 告别繁琐 不再出错 打通混凝土电子化生产全流程 提升搅拌站调度效率 原材料进料监管安全有保障 跨部门高效协同 生产部 管理销售合同、任务单,下达生产任务; 查看/修改/导出/打印发货…

OpenGL库安装

1 库安装本文不说 Win10 GLEW GLFW OpenGL VS2019 环境配置 - 知乎 (zhihu.com) 安装osg库&#xff0c;里面也有GL第三方库的下载方法&#xff0c;见我其他博客 2 OpenGL入门案例一 #include <GL/glut.h>void display() {glClear(GL_COLOR_BUFFER_BIT);glBegin(GL…

前端下载后端文件流,文件可以下载,但是打不开,显示“文件已损坏”的问题分析与解决方案

目录 场景还原相关代码开发者工具 - 网络请求记录 问题排查定位改bug 总结 场景还原 我在前端使用axios接收后端xlsx表格文件流并下载&#xff0c;xlsx文件能够下载成功&#xff0c;但是打开却显示文件无法打开 相关代码 请求API封装:Content–Type以及responseType经核对均…

使用navicat操纵数据库

<1>连接数据库 打开Navicat&#xff0c;点击“连接”&#xff0c;选择“MySQL”&#xff0c;这边是本机安装的mysql,主机为localhost&#xff0c;输入root密码。 使用Navicat创建数据库并导入SQL文件 SQL查询 普通SQL查询 USE demo; SELECT * FROM t_emp;SELECT emp…

HNU程序设计 练习四-数组(强化)

1.快速公交BRT 【问题描述】 在城市里&#xff0c;快速公交&#xff08;BRT&#xff09;线路为一条直线&#xff0c;在其线路上有 n 个交叉路口&#xff0c;在每个路口都有一个交通信号灯&#xff0c;在红灯与绿灯之间周期性循环。 在绿灯亮起持续 g 秒的期间&#xff0c;允许…

qt5.15.2+vs2019源码调试开发环境搭建

说明 一些qt文件不进行源码调试无法知道其中的原理。提高软件质量&#xff0c;从概念原理及应用角度看待必须知道qt类运行原理。 1.安装 在网上找到qt安装包qt-unified-windows-x64-4.5.1-online.exe&#xff0c;安装qt5.15.2&#xff0c;有选择Qt Debug Information Files …

mysql高级函数——GROUP_CONCAT

分组拼接GROUP_CONCAT(expr) group_concat函数 实现分组查询之后的数据进行合并&#xff0c;并返回一个字符串结果。用于将多个字符串拼接成一个字符串。MySql默认的最大拼接长度为1024个字节 应用场景&#xff1a;按照产品编码分组&#xff0c;获取生效策略 SELECTproduct_n…

漏洞分析 | U8 Cloud ServiceDispatcher反序列化漏洞及补丁分析

0x01 概述 近期&#xff0c;爆出了 U8cloud ServiceDispatcherServlet 接口的反序列化漏洞。在对该漏洞进行分析时&#xff0c;我们发现 NC 也曾出现过 ServiceDispatcherServlet 接口的反序列化漏洞。经过分析后发现&#xff0c;这两个漏洞的功能代码实现方式并不相同。但二者…

5.1用栈实现队列(LC232-E)

算法&#xff1a; 这道题就是用栈模拟队列。 举个例子理解&#xff1a; 输入&#xff1a; ["MyQueue", "push", "push", "peek", "pop", "empty"] [[], [1], [2], [], [], []] 输出&#xff1a; [null, null, …

二叉树第i层结点个数

//二叉树第i层结点个数 int LevelNodeCount(BiTree T, int i) {if (T NULL || i < 1)return 0;if (i 1) return 1;return LevelNodeCount(T->lchild, i - 1) LevelNodeCount(T->rchild, i - 1); } int GetDepthOfBiTree(BiTree T) {if (T NULL)return 0;return Ge…

Linux - 进程控制(下篇)- 进程等待

进程等待 为什么进程需要等待&#xff1f; 我们知道&#xff0c;在Linux 当中&#xff0c;父子进程之间一些结构就是一些多叉树的结构&#xff0c;一个父进程可能管理或者创建了很多个字进程。 而其实我们在代码当中使用fork&#xff08;&#xff09;函数创建的子进程的父进程…

Paddle炼丹炉炸了Unexpected BUS error encountered in DataLoader worker

Paddle训练报错&#xff0c;内存不足 python train.py -c config/ResNet_W18.yaml修改配置文件config/ResNet_W18.yaml # 原配置 loader:num_workers: 4use_shared_memory: True# 修改后 loader:num_workers: 2use_shared_memory: False

《申论技巧》

一、做题过程 做题过程&#xff1a; 四个要素分析题干 一对多&#xff1a;考虑材料之间的灵活运用&#xff1b;问题对策&#xff1b;并列&#xff1b;主材料与辅材料 多个题目对应一个一篇材料&#xff1b;答案各有侧重&#xff0c;不重合 主体内容 二、读材料 2.1 粗读…