🙌秋名山码民的主页
😂oi退役选手,Java、大数据、单片机、IoT均有所涉猎,热爱技术,技术无罪
🎉欢迎关注🔎点赞👍收藏⭐️留言📝
获取源码,添加WX
目录
- 1. 前言
- 2. 概述esp8266
- 3. AT命令来控制模块
- 4. MQTT协议的概述
- 5. 示例
- 最后
1. 前言
在学习物联网的过程中,大家首先想到的通信应该就是蓝牙和wifi了,而wifi中又属esp8266比较出名,包括esp32的快速崛起也离不开起本身内置wife和蓝牙,这个模块本身可以连接路由器,也可以作为热点让你的手机来连接他。
本文主要从以下几个方面来进行讲解:
- 简单概述esp8266
- 搞定其AT指令集
- MQTT协议的概述
- 示例
2. 概述esp8266
ESP8266是一款以太网控制器芯片,由乐鑫科技(Espressif Systems)推出。它是一种低成本、高性能的Wi-Fi模块,广泛应用于物联网和嵌入式系统领域。
- 完整的WIFE网络解决方案,可独立运行,也可作为模块从动装置搭载到其他soc
- ESP8266模块内部集成了Wi-Fi无线通信功能,支持802.11b/g/n标准,可以连接到无线网络并进行数据传输。它通过串口与主控设备通信,并提供了AT指令集,简化了与主控设备的交互
- 可以采用Arduino IDE、MicroPython、NodeMCU等多种开发环境
- ESP8266具有良好的可扩展性,可以通过外部Flash存储器扩展其储存容量,支持OTA(Over-The-Air)固件升级
- ESP8266 RTOS SDK,支持FreeRTOS操作系统
具体参数:
硬件接口介绍:
-
UART接口:UART(通用异步收发传输器)接口是ESP8266与其他设备进行串行通信的主要接口,它可通过RX和TX引脚连接到其他设备。通过UART接口,可以实现与计算机、传感器、其他微控制器等设备的数据收发和控制。
-
GPIO口:ESP8266具有多个GPIO(通用输入/输出)口,用于与其他外围设备进行交互。GPIO口支持数字输入输出和PWM功能,可以通过编程来控制各种外设,如LED灯、继电器、开关等。
-
I2C接口:I2C(Inter-Integrated Circuit)接口是一种串行通信接口,可以连接多个设备,使用两根线(SDA和SCL)实现数据传输。ESP8266通过I2C接口可以与其他I2C设备通信,如传感器、显示屏等。
-
SPI接口:SPI(Serial Peripheral Interface)接口也是一种串行通信接口,可以连接多个设备,使用四根线(MISO、MOSI、SCK和SS)实现数据传输。ESP8266通过SPI接口可以与其他SPI设备通信,如Flash存储器、LCD显示屏等。
-
ADC接口:ESP8266内部集成了一个ADC(模数转换器),用于将模拟信号转换为数字信号。ADC接口可以连接到传感器等模拟设备,读取模拟值并将其转换为数字数据。
-
PWM接口:ESP8266的GPIO口支持PWM(脉冲宽度调制)功能,可用于控制电机、灯光等外设的亮度和速度。
-
SDIO接口:SDIO(Secure Digital Input Output)接口是一种高速的串行数据接口,常用于SD卡和MMC卡的读写操作。ESP8266通过SDIO接口可以连接到SD卡或MMC卡,实现数据存储和读取。
3. AT命令来控制模块
esp8266按照乐鑫官方的指令有上百条,但是常用的就10来条,下面我列举一些,其他的读者若需要可以下载乐鑫的用户手册查看。
- AT:测试ESP8266模块是否在线,并返回“OK”表示模块正常工作。
- AT+RST:重置ESP8266模块,并返回“ready”表示模块已经准备好。
- AT+CWMODE=:设置ESP8266的工作模式,其中参数取值为1、2或3,分别对应STA模式、AP模式和STA+AP模式。
- AT+CWJAP=,:连接到指定的Wi-Fi网络,其中和分别为需要连接的Wi-Fi网络名称和密码。该指令执行成功后,ESP8266会自动获取IP地址。
- AT+CIFSR:获取ESP8266当前IP地址。
- AT+CIPMUX=:设置ESP8266的多连接模式,其中参数取值为0或1,分别表示单连接模式和多连接模式。
- AT+CIPSTART=,,:建立TCP或UDP连接,其中参数为“TCP”或“UDP”,参数为连接目标IP地址,参数为连接目标端口号。
- AT+CIPSEND=:设置ESP8266发送数据的长度,其中参数为待发送数据的长度,发送数据时需先执行该指令。
- AT+CIPCLOSE:关闭ESP8266当前连接。
记得把端口打开:Windows打开特定端口
使用的调试助手为野火多功能调试助手
AT参考
4. MQTT协议的概述
MQTT(Message Queuing Telemetry Transport)是一种轻量级的、基于发布/订阅模型的消息传输协议,适用于物联网和移动应用等场景,他们之间的关系大概就像下面这张图一样:
具体协议介绍,后续有机会,单独开一篇来讲解。
5. 示例
代码取自野火,完整代码在野火论坛,公开资料
通用代码:
- 初始化函数
void ESP8266_Init ( void )
{
ESP8266_GPIO_Config ();
ESP8266_USART_Config ();
macESP8266_RST_HIGH_LEVEL();
macESP8266_CH_ENABLE();
}
- 初始化GPIO
static void ESP8266_GPIO_Config ( void )
{
/*定义一个GPIO_InitTypeDef类型的结构体*/
GPIO_InitTypeDef GPIO_InitStructure;
/* 配置 CH_PD 引脚*/
macESP8266_CH_PD_APBxClock_FUN ( macESP8266_CH_PD_CLK, ENABLE );
GPIO_InitStructure.GPIO_Pin = macESP8266_CH_PD_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init ( macESP8266_CH_PD_PORT, & GPIO_InitStructure );
/* 配置 RST 引脚*/
macESP8266_RST_APBxClock_FUN ( macESP8266_RST_CLK, ENABLE );
GPIO_InitStructure.GPIO_Pin = macESP8266_RST_PIN;
GPIO_Init ( macESP8266_RST_PORT, & GPIO_InitStructure );
}
- 初始化串口
static void ESP8266_USART_Config ( void )
{
GPIO_InitTypeDef GPIO_InitStructure;
USART_InitTypeDef USART_InitStructure;
/* config USART clock */
macESP8266_USART_APBxClock_FUN ( macESP8266_USART_CLK, ENABLE );
macESP8266_USART_GPIO_APBxClock_FUN ( macESP8266_USART_GPIO_CLK, ENABLE );
/* USART GPIO config */
/* Configure USART Tx as alternate function push-pull */
GPIO_InitStructure.GPIO_Pin = macESP8266_USART_TX_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(macESP8266_USART_TX_PORT, &GPIO_InitStructure);
/* Configure USART Rx as input floating */
GPIO_InitStructure.GPIO_Pin = macESP8266_USART_RX_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(macESP8266_USART_RX_PORT, &GPIO_InitStructure);
/* USART1 mode config */
USART_InitStructure.USART_BaudRate = macESP8266_USART_BAUD_RATE;
USART_InitStructure.USART_WordLength = USART_WordLength_8b;
USART_InitStructure.USART_StopBits = USART_StopBits_1;
USART_InitStructure.USART_Parity = USART_Parity_No ;
USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;
USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;
USART_Init(macESP8266_USARTx, &USART_InitStructure);
/* 中断配置 */
USART_ITConfig ( macESP8266_USARTx, USART_IT_RXNE, ENABLE ); //使能串口接收中断
USART_ITConfig ( macESP8266_USARTx, USART_IT_IDLE, ENABLE ); //使能串口总线空闲中断
ESP8266_USART_NVIC_Configuration ();
USART_Cmd(macESP8266_USARTx, ENABLE);
}
- 配置中断
static void ESP8266_USART_NVIC_Configuration ( void )
{
NVIC_InitTypeDef NVIC_InitStructure;
/* Configure the NVIC Preemption Priority Bits */
NVIC_PriorityGroupConfig ( macNVIC_PriorityGroup_x );
/* Enable the USART2 Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = macESP8266_USART_IRQ;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}
常规的结束,接下来就是移植代码,ESP8266,接收发送模块化代码
/*
* 函数名:ESP8266_Rst
* 描述 :重启WF-ESP8266模块
* 输入 :无
* 返回 : 无
* 调用 :被 ESP8266_AT_Test 调用
*/
void ESP8266_Rst ( void )
{
#if 0
ESP8266_Cmd ( "AT+RST", "OK", "ready", 2500 );
#else
macESP8266_RST_LOW_LEVEL();
Delay_ms ( 500 );
macESP8266_RST_HIGH_LEVEL();
#endif
}
/*
* 函数名:ESP8266_Cmd
* 描述 :对WF-ESP8266模块发送AT指令
* 输入 :cmd,待发送的指令
* reply1,reply2,期待的响应,为NULL表不需响应,两者为或逻辑关系
* waittime,等待响应的时间
* 返回 : 1,指令发送成功
* 0,指令发送失败
* 调用 :被外部调用
*/
bool ESP8266_Cmd ( char * cmd, char * reply1, char * reply2, u32 waittime )
{
strEsp8266_Fram_Record .InfBit .FramLength = 0; //从新开始接收新的数据包
macESP8266_Usart ( "%s\r\n", cmd );
if ( ( reply1 == 0 ) && ( reply2 == 0 ) ) //不需要接收数据
return true;
Delay_ms ( waittime ); //延时
strEsp8266_Fram_Record .Data_RX_BUF [ strEsp8266_Fram_Record .InfBit .FramLength ] = '\0';
macPC_Usart ( "%s", strEsp8266_Fram_Record .Data_RX_BUF );
if ( ( reply1 != 0 ) && ( reply2 != 0 ) )
return ( ( bool ) strstr ( strEsp8266_Fram_Record .Data_RX_BUF, reply1 ) ||
( bool ) strstr ( strEsp8266_Fram_Record .Data_RX_BUF, reply2 ) );
else if ( reply1 != 0 )
return ( ( bool ) strstr ( strEsp8266_Fram_Record .Data_RX_BUF, reply1 ) );
else
return ( ( bool ) strstr ( strEsp8266_Fram_Record .Data_RX_BUF, reply2 ) );
}
/*
* 函数名:ESP8266_AT_Test
* 描述 :对WF-ESP8266模块进行AT测试启动
* 输入 :无
* 返回 : 无
* 调用 :被外部调用
*/
//void ESP8266_AT_Test ( void )
//{
// macESP8266_RST_HIGH_LEVEL();
//
// Delay_ms ( 1000 );
//
// while ( ! ESP8266_Cmd ( "AT", "OK", NULL, 500 ) ) ESP8266_Rst ();
//}
void ESP8266_AT_Test ( void )
{
char count=0;
macESP8266_RST_HIGH_LEVEL();
Delay_ms ( 1000 );
while ( count < 10 )
{
if( ESP8266_Cmd ( "AT", "OK", NULL, 500 ) ) return;
ESP8266_Rst();
++ count;
}
}
/*
* 函数名:ESP8266_Net_Mode_Choose
* 描述 :选择WF-ESP8266模块的工作模式
* 输入 :enumMode,工作模式
* 返回 : 1,选择成功
* 0,选择失败
* 调用 :被外部调用
*/
bool ESP8266_Net_Mode_Choose ( ENUM_Net_ModeTypeDef enumMode )
{
switch ( enumMode )
{
case STA:
return ESP8266_Cmd ( "AT+CWMODE=1", "OK", "no change", 2500 );
case AP:
return ESP8266_Cmd ( "AT+CWMODE=2", "OK", "no change", 2500 );
case STA_AP:
return ESP8266_Cmd ( "AT+CWMODE=3", "OK", "no change", 2500 );
default:
return false;
}
}
/*
* 函数名:ESP8266_JoinAP
* 描述 :WF-ESP8266模块连接外部WiFi
* 输入 :pSSID,WiFi名称字符串
* :pPassWord,WiFi密码字符串
* 返回 : 1,连接成功
* 0,连接失败
* 调用 :被外部调用
*/
bool ESP8266_JoinAP ( char * pSSID, char * pPassWord )
{
char cCmd [120];
sprintf ( cCmd, "AT+CWJAP=\"%s\",\"%s\"", pSSID, pPassWord );
return ESP8266_Cmd ( cCmd, "OK", NULL, 5000 );
}
/*
* 函数名:ESP8266_BuildAP
* 描述 :WF-ESP8266模块创建WiFi热点
* 输入 :pSSID,WiFi名称字符串
* :pPassWord,WiFi密码字符串
* :enunPsdMode,WiFi加密方式代号字符串
* 返回 : 1,创建成功
* 0,创建失败
* 调用 :被外部调用
*/
bool ESP8266_BuildAP ( char * pSSID, char * pPassWord, ENUM_AP_PsdMode_TypeDef enunPsdMode )
{
char cCmd [120];
sprintf ( cCmd, "AT+CWSAP=\"%s\",\"%s\",1,%d", pSSID, pPassWord, enunPsdMode );
return ESP8266_Cmd ( cCmd, "OK", 0, 1000 );
}
/*
* 函数名:ESP8266_Enable_MultipleId
* 描述 :WF-ESP8266模块启动多连接
* 输入 :enumEnUnvarnishTx,配置是否多连接
* 返回 : 1,配置成功
* 0,配置失败
* 调用 :被外部调用
*/
bool ESP8266_Enable_MultipleId ( FunctionalState enumEnUnvarnishTx )
{
char cStr [20];
sprintf ( cStr, "AT+CIPMUX=%d", ( enumEnUnvarnishTx ? 1 : 0 ) );
return ESP8266_Cmd ( cStr, "OK", 0, 500 );
}
/*
* 函数名:ESP8266_Link_Server
* 描述 :WF-ESP8266模块连接外部服务器
* 输入 :enumE,网络协议
* :ip,服务器IP字符串
* :ComNum,服务器端口字符串
* :id,模块连接服务器的ID
* 返回 : 1,连接成功
* 0,连接失败
* 调用 :被外部调用
*/
bool ESP8266_Link_Server ( ENUM_NetPro_TypeDef enumE, char * ip, char * ComNum, ENUM_ID_NO_TypeDef id)
{
char cStr [100] = { 0 }, cCmd [120];
switch ( enumE )
{
case enumTCP:
sprintf ( cStr, "\"%s\",\"%s\",%s", "TCP", ip, ComNum );
break;
case enumUDP:
sprintf ( cStr, "\"%s\",\"%s\",%s", "UDP", ip, ComNum );
break;
default:
break;
}
if ( id < 5 )
sprintf ( cCmd, "AT+CIPSTART=%d,%s", id, cStr);
else
sprintf ( cCmd, "AT+CIPSTART=%s", cStr );
return ESP8266_Cmd ( cCmd, "OK", "ALREAY CONNECT", 4000 );
}
/*
* 函数名:ESP8266_StartOrShutServer
* 描述 :WF-ESP8266模块开启或关闭服务器模式
* 输入 :enumMode,开启/关闭
* :pPortNum,服务器端口号字符串
* :pTimeOver,服务器超时时间字符串,单位:秒
* 返回 : 1,操作成功
* 0,操作失败
* 调用 :被外部调用
*/
bool ESP8266_StartOrShutServer ( FunctionalState enumMode, char * pPortNum, char * pTimeOver )
{
char cCmd1 [120], cCmd2 [120];
if ( enumMode )
{
sprintf ( cCmd1, "AT+CIPSERVER=%d,%s", 1, pPortNum );
sprintf ( cCmd2, "AT+CIPSTO=%s", pTimeOver );
return ( ESP8266_Cmd ( cCmd1, "OK", 0, 500 ) &&
ESP8266_Cmd ( cCmd2, "OK", 0, 500 ) );
}
else
{
sprintf ( cCmd1, "AT+CIPSERVER=%d,%s", 0, pPortNum );
return ESP8266_Cmd ( cCmd1, "OK", 0, 500 );
}
}
/*
* 函数名:ESP8266_Get_LinkStatus
* 描述 :获取 WF-ESP8266 的连接状态,较适合单端口时使用
* 输入 :无
* 返回 : 2,获得ip
* 3,建立连接
* 3,失去连接
* 0,获取状态失败
* 调用 :被外部调用
*/
uint8_t ESP8266_Get_LinkStatus ( void )
{
if ( ESP8266_Cmd ( "AT+CIPSTATUS", "OK", 0, 500 ) )
{
if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "STATUS:2\r\n" ) )
return 2;
else if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "STATUS:3\r\n" ) )
return 3;
else if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "STATUS:4\r\n" ) )
return 4;
}
return 0;
}
/*
* 函数名:ESP8266_Get_IdLinkStatus
* 描述 :获取 WF-ESP8266 的端口(Id)连接状态,较适合多端口时使用
* 输入 :无
* 返回 : 端口(Id)的连接状态,低5位为有效位,分别对应Id5~0,某位若置1表该Id建立了连接,若被清0表该Id未建立连接
* 调用 :被外部调用
*/
uint8_t ESP8266_Get_IdLinkStatus ( void )
{
uint8_t ucIdLinkStatus = 0x00;
if ( ESP8266_Cmd ( "AT+CIPSTATUS", "OK", 0, 500 ) )
{
if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+CIPSTATUS:0," ) )
ucIdLinkStatus |= 0x01;
else
ucIdLinkStatus &= ~ 0x01;
if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+CIPSTATUS:1," ) )
ucIdLinkStatus |= 0x02;
else
ucIdLinkStatus &= ~ 0x02;
if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+CIPSTATUS:2," ) )
ucIdLinkStatus |= 0x04;
else
ucIdLinkStatus &= ~ 0x04;
if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+CIPSTATUS:3," ) )
ucIdLinkStatus |= 0x08;
else
ucIdLinkStatus &= ~ 0x08;
if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+CIPSTATUS:4," ) )
ucIdLinkStatus |= 0x10;
else
ucIdLinkStatus &= ~ 0x10;
}
return ucIdLinkStatus;
}
/*
* 函数名:ESP8266_Inquire_ApIp
* 描述 :获取 F-ESP8266 的 AP IP
* 输入 :pApIp,存放 AP IP 的数组的首地址
* ucArrayLength,存放 AP IP 的数组的长度
* 返回 : 0,获取失败
* 1,获取成功
* 调用 :被外部调用
*/
uint8_t ESP8266_Inquire_ApIp ( char * pApIp, uint8_t ucArrayLength )
{
char uc;
char * pCh;
ESP8266_Cmd ( "AT+CIFSR", "OK", 0, 500 );
pCh = strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "APIP,\"" );
if ( pCh )
pCh += 6;
else
return 0;
for ( uc = 0; uc < ucArrayLength; uc ++ )
{
pApIp [ uc ] = * ( pCh + uc);
if ( pApIp [ uc ] == '\"' )
{
pApIp [ uc ] = '\0';
break;
}
}
return 1;
}
/*
* 函数名:ESP8266_UnvarnishSend
* 描述 :配置WF-ESP8266模块进入透传发送
* 输入 :无
* 返回 : 1,配置成功
* 0,配置失败
* 调用 :被外部调用
*/
bool ESP8266_UnvarnishSend ( void )
{
if ( ! ESP8266_Cmd ( "AT+CIPMODE=1", "OK", 0, 500 ) )
return false;
return
ESP8266_Cmd ( "AT+CIPSEND", "OK", ">", 500 );
}
/*
* 函数名:ESP8266_ExitUnvarnishSend
* 描述 :配置WF-ESP8266模块退出透传模式
* 输入 :无
* 返回 : 无
* 调用 :被外部调用
*/
void ESP8266_ExitUnvarnishSend ( void )
{
Delay_ms ( 1000 );
macESP8266_Usart ( "+++" );
Delay_ms ( 500 );
}
/*
* 函数名:ESP8266_SendString
* 描述 :WF-ESP8266模块发送字符串
* 输入 :enumEnUnvarnishTx,声明是否已使能了透传模式
* :pStr,要发送的字符串
* :ulStrLength,要发送的字符串的字节数
* :ucId,哪个ID发送的字符串
* 返回 : 1,发送成功
* 0,发送失败
* 调用 :被外部调用
*/
bool ESP8266_SendString ( FunctionalState enumEnUnvarnishTx, char * pStr, u32 ulStrLength, ENUM_ID_NO_TypeDef ucId )
{
char cStr [20];
bool bRet = false;
if ( enumEnUnvarnishTx )
{
macESP8266_Usart ( "%s", pStr );
bRet = true;
}
else
{
if ( ucId < 5 )
sprintf ( cStr, "AT+CIPSEND=%d,%d", ucId, ulStrLength + 2 );
else
sprintf ( cStr, "AT+CIPSEND=%d", ulStrLength + 2 );
ESP8266_Cmd ( cStr, "> ", 0, 1000 );
bRet = ESP8266_Cmd ( pStr, "SEND OK", 0, 1000 );
}
return bRet;
}
/*
* 函数名:ESP8266_ReceiveString
* 描述 :WF-ESP8266模块接收字符串
* 输入 :enumEnUnvarnishTx,声明是否已使能了透传模式
* 返回 : 接收到的字符串首地址
* 调用 :被外部调用
*/
char * ESP8266_ReceiveString ( FunctionalState enumEnUnvarnishTx )
{
char * pRecStr = 0;
strEsp8266_Fram_Record .InfBit .FramLength = 0;
strEsp8266_Fram_Record .InfBit .FramFinishFlag = 0;
while ( ! strEsp8266_Fram_Record .InfBit .FramFinishFlag );
strEsp8266_Fram_Record .Data_RX_BUF [ strEsp8266_Fram_Record .InfBit .FramLength ] = '\0';
if ( enumEnUnvarnishTx )
pRecStr = strEsp8266_Fram_Record .Data_RX_BUF;
else
{
if ( strstr ( strEsp8266_Fram_Record .Data_RX_BUF, "+IPD" ) )
pRecStr = strEsp8266_Fram_Record .Data_RX_BUF;
}
return pRecStr;
}
最后
参考资料:
《乐鑫ESP8266用户手册》
《ESP8266作为TCP服务器端使用心得》
《野火ESP8266部分例程》
如果本文对你有所帮助,还请三连支持一下博主!