基于海洋捕食者算法的无人机航迹规划-附代码

news2024/11/30 2:40:21

基于海洋捕食者算法的无人机航迹规划

文章目录

  • 基于海洋捕食者算法的无人机航迹规划
    • 1.海洋捕食者搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用海洋捕食者算法来优化无人机航迹规划。

1.海洋捕食者搜索算法

海洋捕食者算法原理请参考:https://blog.csdn.net/u011835903/article/details/118468662

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得海洋捕食者搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用海洋捕食者算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,海洋捕食者算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1159639.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SANSAN每周新鲜事|到底哪一款物联网平台适合你?

假如您有对设备进行监控、控制、管理、维护的需求,或者您的业务系统涉及设备管控、设备数据可视化和分析,大概率上,您需要开发一套系统专门去做设备接入和管理,您会面临两种选择: 1、选择一款合适的物联网平台&#x…

“消费增值:绿色商业模式的创新之路“

随着消费者对绿色、环保生活方式的追求不断增加,一种名为消费增值的商业模式正逐渐受到人们的关注。通过鼓励绿色消费行为,消费增值模式引导消费者形成低碳环保的生活方式,并实现积分的增值和社会效益的提升。一种只涨不跌的模式,…

历年网规上午真题笔记(2015年)

解析: 变更控制为“问题识别”——“问题分析与变更描述”——“变更分析与成本计算”——“变更实现”——“修改后的需求” 自动化工具能够帮助变更控制过程更有效地运作,能有效收集、存储、管理变更,工具应该具备的特征如下: 可定义变更请求中的数据可定义变更请求生命…

以八数码问题为例实现A*算法的求解(未完结)

八数码: 在一个 33 的网格中,1∼8 这 8 个数字和一个 x 恰好不重不漏地分布在这 33 的网格中。 例如: 1 2 3 x 4 6 7 5 8在游戏过程中,可以把 x 与其上、下、左、右四个方向之一的数字交换(如果存在)。…

SQL server数据库端口访问法

最近数据库连接&#xff0c;也是无意中发现了这个问题&#xff0c;数据库可根据端口来连接 网址:yii666.com< 我用的是sql2014测试的&#xff0c;在安装其他程序是默认安装了sql(sql的tcp/ip端口为xxx)&#xff0c;服务也不相同&#xff0c;但是由于比较不全&#xff0c;我…

yum工具(介绍+常用指令)

目录 yum--软件包管理器 概念 引入 rpm安装 yum安装 指令 yum list yum install 包名 yum remove 包名 yum search 包名/关键字 yum update/upgrade yum makecache fast du命令 yum--软件包管理器 概念 引入 在linux中下载软件,可以下载源代码进行编译执行但是…

使用Ansible中的playbook

目录 1.Playbook的功能 2.YAML 3.YAML列表 4.YAML的字典 5.playbook执行命令 6.playbook的核心组件 7.vim 设定技巧 示例 1.Playbook的功能 playbook 是由一个或多个play组成的列表 Playboot 文件使用YAML来写的 2.YAML #简介# 是一种表达资料序列的格式,类似XML #特…

GB28181学习(十四)——语音广播与语音对讲

语音对讲 定义 用户端向设备通过视音频点播请求音频数据&#xff1b;用户端接收音频数据并通过特定的播放设备&#xff08;如音响&#xff09;播放&#xff1b;用户端向设备发送广播请求&#xff1b;设备解析广播成功后通过INVITE方法向用户请求音频数据&#xff1b;用户通过音…

大长案例 - 经典长连接可水平扩容高可用架构

文章目录 需求设计 需求 支撑百万充电桩充电业务的长连接可水平扩容高可用架构需求如下&#xff1a; 可扩展性&#xff1a;系统应该具备高度可扩展性&#xff0c;能够轻松应对新增充电桩的需求。任何时候都应该容易添加更多的充电桩&#xff0c;而不会影响整体性能。 负载均衡…

Linux C语言进阶-D7~D8指针与数组

一维数组 一维数组的数组名&#xff1a;就是一维数组的指针&#xff08;起始地址&#xff09; 如果int *px x;则&#xff1a; x[i]、*(pxi)、*(xi)、px[i]具有完全相同的功能&#xff1a;访问数组第i1个数组元素 注意&#xff1a;1、指针变量和数组在访问数组元素时&#x…

筛网孔径测量方法,您了解多少?

筛网是一种表面有均匀而稳定的透气孔、具有筛选和过滤作用的工业用品&#xff0c;常见的有金属丝编织网和冲孔板筛网&#xff0c;广泛用于新能源汽车、太阳能光伏、冶金、煤炭、橡胶、石油、化工、制药、建材、粮油等行业。 筛网有着严格的网孔尺寸规范&#xff0c;需要符合标…

141. 环形链表、Leetcode的Python实现

博客主页&#xff1a;&#x1f3c6;看看是李XX还是李歘歘 &#x1f3c6; &#x1f33a;每天分享一些包括但不限于计算机基础、算法等相关的知识点&#x1f33a; &#x1f497;点关注不迷路&#xff0c;总有一些&#x1f4d6;知识点&#x1f4d6;是你想要的&#x1f497; ⛽️今…

安装opensips

1. 安装opensips ubuntu下安装&#xff1a; 1&#xff09;执行以下的脚本 openSIPS | APT Repository 2&#xff09;apt-get install opensips 安装完毕后&#xff0c;再选择需要的module继续安装&#xff0c;不需要编译 如果只是用作load balancer&#xff0c;那么只需要…

剑指JUC原理-8.Java内存模型

&#x1f44f;作者简介&#xff1a;大家好&#xff0c;我是爱吃芝士的土豆倪&#xff0c;24届校招生Java选手&#xff0c;很高兴认识大家&#x1f4d5;系列专栏&#xff1a;Spring源码、JUC源码&#x1f525;如果感觉博主的文章还不错的话&#xff0c;请&#x1f44d;三连支持&…

Windows安装tensorflow-gpu=1.14.0CUDA=10.0cuDNN=7.4 (多版本CUDA共存)

文章目录 0. 前置说明1. 查看版本对应关系2. 安装 cuda3. 安装 cudnn4. 添加环境变量5. 安装 tensorflow 0. 前置说明 本机&#xff08;Windows 11&#xff09;已安装CUDA 11.7 使用命令查看显卡驱动&#xff1a; nvidia-smi这里显示的CUDA Version: 11.7说明支持安装11.7版本…

小说网站源码带管理后台手机端和采集

搭建教程&#xff0c;安装宝塔 php7.2&#xff0c;绑定域名&#xff0c;上传源码到根目录解压 源码获取请自行百度&#xff1a;一生相随博客 一生相随博客致力于分享全网优质资源&#xff0c;包括网站源码、游戏源码、主题模板、插件、电脑软件、手机软件、技术教程等等&#…

2.Docker的安装

1.认识Docker的基本架构 下面这张图是docker官网上的&#xff0c;介绍了整个Docker的基础架构&#xff0c;我们根据这张图来学习一下docker的涉及到的一些相关概念。 1.1 Docker的架构组成 Docker架构是由Client(客户端)、Docker Host(服务端)、Registry(远程仓库)组成。 …

每天一道算法题:11. 盛最多水的容器

难度 中等 题目 给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 **说明&#xff1a;**你不…

哈夫曼树c语言版

一、哈夫曼树概念 哈夫曼树又称最优树给定N个权值作为N个叶子结点&#xff0c;构造一棵二叉树&#xff0c;若该树的带权路径长度达到最小&#xff0c;称这样的二叉树为最优二叉树&#xff0c;也称为哈夫曼树(Huffman Tree)。哈夫曼树是带权路径长度最短的树&#xff0c;权值较大…

传输层协议——TCP协议 (详解!!!)

目录 TCP的报文格式 1. 源端口号&#xff0c;目的端口号 和 udp 相同&#xff08;前面文章介绍了udp&#xff09; 2. 4位首部长度 —— TCP的报头长度 3. 选项 —— option &#xff08;可选的&#xff1a;可以有&#xff0c;可以没有&#xff09; 4.保留&#xff08;6…