基于静电放电算法的无人机航迹规划-附代码

news2024/11/19 13:41:17

基于静电放电算法的无人机航迹规划

文章目录

  • 基于静电放电算法的无人机航迹规划
    • 1.静电放电搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用静电放电算法来优化无人机航迹规划。

1.静电放电搜索算法

静电放电算法原理请参考:https://blog.csdn.net/u011835903/article/details/118755197

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得静电放电搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用静电放电算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,静电放电算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1155185.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

电脑加密软件哪个好?电脑加密软件推荐

电脑是我们办公离不开的工具,而为了保护电脑数据安全,我们可以使用专业的电脑加密软件来进行加密保护。那么,电脑加密软件哪个好呢?下面我们就来了解一下。 文件加密——超级加密3000 想要安全加密电脑重要文件,我们可…

SAM:Segment Anything 代码复现和测试 基本使用

相关地址 代码: https://github.com/facebookresearch/segment-anything 在线网站: https://segment-anything.com/demo 环境配置 建议可以clone下来学习相关代码,安装可以不依赖与这个库 git clone https://github.com/facebookresearch…

计算机毕业设计选题推荐-大学生校园兼职微信小程序/安卓APP-项目实战

✨作者主页:IT研究室✨ 个人简介:曾从事计算机专业培训教学,擅长Java、Python、微信小程序、Golang、安卓Android等项目实战。接项目定制开发、代码讲解、答辩教学、文档编写、降重等。 ☑文末获取源码☑ 精彩专栏推荐⬇⬇⬇ Java项目 Python…

unittest与pytest的区别

Unittest vs Pytest 主要从用例编写规则、用例的前置和后置、参数化、断言、用例执行、失败重运行和报告这几个方面比较unittest和pytest的区别: 用例编写规则 用例前置与后置条件 断言 测试报告 失败重跑机制 参数化 用例分类执行 如果不好看,可以看下面表格&…

我与“云栖大会”剪不断的缘分

目录 前言首次参会经历技术前沿与创新洞察交流与合作项目展示与学习收获激励与成长之旅结束语 前言 作为开发者,想必大家对“云栖大会”并不陌生,“云栖大会”作为中国最具规模和影响力的云计算盛会,每年吸引着众多科技从业者、企业家和开发…

【C语言初学者周冲刺计划】2.3有3个字符串,要求找出其中“最大者

目录 1解题思路: 2代码: 3代码运行结果:​编辑 4总结: 1解题思路: 比较字符串大小的依据:26个大、小写字母“A-Z”,“a-z”中,字母越往后面的越大,小写字母比大写字母…

哪款进销存软件好用,企业该如何选择进销存软件?

哪个进销存软件好用?企业该如何选择进销存软件? 对于这个问题,企业首先应该考虑的不是所谓的哪个进销存软件是免费的,哪个进销存软件便宜,企业对于业务系统的选型可不像你双十一凑单买日用品那么简单。 如果你想要完…

【扩散模型】理解扩散模型的微调(Fine-tuning)和引导(Guidance)

理解扩散模型的微调Fine-tuning和引导Guidance 1. 环境准备2. 加载预训练过的管线3. DDIM——更快的采样过程4. 微调5. 引导6. CLIP引导参考资料 微调(Fine-tuning)指的是在预先训练好的模型上进行进一步训练,以适应特定任务或领域的过程。这…

使用 Authing 快速实现一套类似 OpenAI 的认证、API Key 商业权益授权机制

如果你有经常使用 OpenAI 或者 HuggingFace 这一类面向开发者的 SaaS 服务,对于 API Key 肯定不会陌生。我们在使用这些服务时,通常都会在其平台上面创建一套 API Key,之后我们才能在代码中通过这一串 API key 访问其服务;同时&am…

qt5工程打包成可执行exe程序

一、编译生成.exe 1.1、在release模式下编译生成.exe 1.2、建一个空白文件夹package,再将在release模式下生成的.exe文件复制到新建的文件夹中package。 1.3、打开QT5的命令行 1.4、用命令行进入新建文件夹package,使用windeployqt对生成的exe文件进行动…

Android Button修改背景颜色及实现科技感效果

目录 效果展示 实现科技感效果 修改Button背景 结语 效果展示 Android Button修改背景颜色及实现科技感效果效果如下: 实现科技感效果 操作方法如下: 想要创建一个富有科技感的按钮样式时,可以使用 Android 的 Shape Drawable 和 Sele…

阿里云发布通义千问2.0,模型参数达千亿级

10月31日,阿里云正式发布千亿级参数大模型通义千问2.0。在10个权威测评中,通义千问2.0综合性能超过GPT-3.5,正在加速追赶GPT-4。当天,通义千问APP在各大手机应用市场正式上线,所有人都可通过APP直接体验最新模型能力。…

精密数据工匠:探索 Netty ChannelHandler 的奥秘

通过上篇文章(Netty入门 — Channel,把握 Netty 通信的命门),我们知道 Channel 是传输数据的通道,但是有了数据,也有数据通道,没有数据加工也是没有意义的,所以今天学习 Netty 的第四…

一种支持热插拔的服务端插件设计思路

定位 服务端插件是一个逻辑扩展平台,提供了一个快速托管逻辑的能力。 核心特点 高性能:相对于RPC调用,没有网络的损耗,性能足够强劲。 高可靠:基于线程隔离,保证互不影响,插件的资源占用或崩溃等问题不直接影响业务。 部署快:不需要发布审核流程, 插件本身逻辑简短,…

有一个 3*4 的矩阵,找出其中值最大的元素,及其行列号

1解题思路&#xff1a; 首先学会输入二维数组&#xff1b;然后知道如何比较求最大值&#xff1b;最后就是格式问题&#xff1b; 2代码&#xff1a; #include<stdio.h> int main() {int a[3][4];int i,j,max,row,line;for(i0;i<3;i){printf("请输入二维数组\n&…

【JAVA】类与对象的重点解析

个人主页&#xff1a;【&#x1f60a;个人主页】 系列专栏&#xff1a;【❤️初识JAVA】 文章目录 前言类与对象的关系JAVA源文件有关类的重要事项static关键字 前言 Java是一种面向对象编程语言&#xff0c;OOP是Java最重要的概念之一。学习OOP时&#xff0c;学生必须理解面向…

架构设计之大数据架构(Lambda架构、Kappa架构)

大数据架构 一. 大数据技术生态二. 大数据分层架构三. Lambda架构3.1 Lambda架构分解为三层3.2 优缺点3.3 实际案例 四. Kappa架构4.1 结构图4.2 优缺点4.3 实际案例 五. Lambda架构与Kappa架构对比 其它相关推荐&#xff1a; 系统架构之微服务架构 系统架构设计之微内核架构 鸿…

杂货铺 | 报错记录(持续更新)

文章目录 ⚠️python SyntaxError: Non-UTF-8 code starting with ‘\xb3‘ in file⚠️partially initialized module ‘‘ has no attribute ‘‘(most likely due to a circular import)⚠️AttributeError: ‘DataFrame‘ object has no attribute ‘append‘ ⚠️python S…

OpenCV官方教程中文版 —— 分水岭算法图像分割

OpenCV官方教程中文版 —— 分水岭算法图像分割 前言一、原理二、示例三、完整代码 前言 本节我们将要学习 • 使用分水岭算法基于掩模的图像分割 • 函数&#xff1a;cv2.watershed() 一、原理 任何一副灰度图像都可以被看成拓扑平面&#xff0c;灰度值高的区域可以被看成…

企业知识库知识分类太有必要了,是省时省力的关键!

企业知识库是存储、组织和共享企业内部知识的重要工具。在现代企业中&#xff0c;知识是一项宝贵的资产&#xff0c;对于提高企业的竞争力和创新能力至关重要。而通过企业知识库进行知识分类&#xff0c;可以将海量信息有序划分和组织&#xff0c;让企业员工能够快速定位、理解…