目录
一、 Nacos的寻址机制
1、前提
2、设计
3、内部实现
3.1、单机寻址
3.2、文件寻址
3.3、地址服务器寻址
4、未来可扩展点
4.1、集群节点自动扩缩容
💖 Spring家族及微服务系列文章
一、 Nacos的寻址机制
1、前提
Nacos 支持单机部署以及集群部署,针对单机模式,Nacos 只是自己和自己通信;对于集群模式,则集群内的每个 Nacos 成员都需要相互通信。因此这就带来⼀个问题,该以何种方式去管理集群内的 Nacos 成员节点信息,而这,就是 Nacos 内部的寻址机制。
2、设计
无论是单机模式,还是集群模式,其根本区别只是 Nacos 成员节点的个数是单个还是多个,并且,要能够感知到节点的变更情况:节点是增加了还是减少了;当前最新的成员列表信息是什么;以何种方式去管理成员列表信息;如何快速的支持新的、更优秀的成员列表管理模式等等。针对上述需求点,我们抽象出了⼀个 MemberLookup 接口,具体设计如下:
public interface MemberLookup { /** * start. * * @throws NacosException NacosException */ void start() throws NacosException; /** * Inject the ServerMemberManager property. * * @param memberManager {@link ServerMemberManager} */ void injectMemberManager(ServerMemberManager memberManager); /** * The addressing pattern finds cluster nodes. * * @param members {@link Collection} */ void afterLookup(Collection<Member> members); /** * Addressing mode closed. * * @throws NacosException NacosException */ void destroy() throws NacosException; }
(ServerMemberManager 存储着本节点所知道的所有成员节点列表信息,提供了针对成员节点的增删改查操作,同时维护了⼀个 MemberLookup 列表,方便进行动态切换成员节点寻址方式。)可以看到,MemberLookup 接口非常简单,核心接口就两个—— injectMemberManager 以及afterLookup ,前者用于将 ServerMemberManager 注入到 MemberLookup 中,方便利用ServerMemberManager 的存储、查询能力,后者 afterLookup 则是⼀个事件接口,当 MemberLookup 需要进行成员节点信息更新时,会将当前最新的成员节点列表信息通过该函数进行通知给ServerMemberManager,具体的节点管理方式,则是隐藏到具体的 MemberLookup 实现中。接着来介绍下当前 Nacos 内部实现的几种寻址机制。
3、内部实现
3.1、单机寻址
com.alibaba.nacos.core.cluster.lookup.StandaloneMemberLookup
单机模式的寻址模式很简单,其实就是找到自己的 IP:PORT 组合信息,然后格式化为⼀个节点信息,调用 afterLookup 然后将信息存储到 ServerMemberManager 中。public class StandaloneMemberLookup extends AbstractMemberLookup { @Override public void start() { if (start.compareAndSet(false, true)) { String url = InetUtils.getSelfIp() + ":" + ApplicationUtils.getPort(); afterLookup(MemberUtils.readServerConf(Collections.singletonList(url))); } } }
3.2、文件寻址
com.alibaba.nacos.core.cluster.lookup.FileConfigMemberLookup
文件寻址模式是 Nacos 集群模式下的默认寻址实现。文件寻址模式很简单,其实就是每个 Nacos节点需要维护⼀个叫做 cluster.conf 的文件。192.168.16.101:8847 192.168.16.102 192.168.16.103
该文件默认只需要填写每个成员节点的 IP 信息即可,端口会自动选择 Nacos 的默认端口 8848,如果说有特殊需求更改了 Nacos 的端口信息,则需要在该文件将该节点的完整网路地址信息补充完整(IP:PORT)。
当 Nacos 节点启动时,会读取该文件的内容,然后将文件内的 IP 解析为节点列表,调用 afterLookup 存入 ServerMemberManager 。private void readClusterConfFromDisk() { Collection<Member> tmpMembers = new ArrayList<>(); try { List<String> tmp = ApplicationUtils.readClusterConf(); tmpMembers = MemberUtils.readServerConf(tmp); } catch (Throwable e) { Loggers.CLUSTER .error("nacos-XXXX [serverlist] failed to get serverlist from disk!, error :{}", e.getMessage()); } afterLookup(tmpMembers); }
如果发现集群扩缩容,那么就需要修改每个 Nacos 节点下的 cluster.conf 文件,然后 Nacos 内部的文件变动监听中心会自动发现文件修改,重新读取文件内容、加载 IP 列表信息、更新新增的节点。
private FileWatcher watcher = new FileWatcher() { @Override public void onChange(FileChangeEvent event) { readClusterConfFromDisk(); } @Override public boolean interest(String context) { return StringUtils.contains(context, "cluster.conf"); } }; public void start() throws NacosException { if (start.compareAndSet(false, true)) { readClusterConfFromDisk(); // Use the inotify mechanism to monitor file changes and automatically // trigger the reading of cluster.conf try { WatchFileCenter.registerWatcher(ApplicationUtils.getConfFilePath(), watcher); } catch (Throwable e) { Loggers.CLUSTER.error("An exception occurred in the launch file monitor : {}", e.getMessage()); } } }
但是,这种默认寻址模式有⼀个缺点——运维成本较大,可以想象下,当你新增⼀个 Nacos 节点时,需要去手动修改每个 Nacos 节点下的 cluster.conf 文件,这是多么辛苦的⼀件工作,或者稍微高端⼀点,利用 ansible 等自动化部署的工具去推送 cluster.conf 文件去代替自己的手动操作,虽然说省去了较为繁琐的人工操作步骤,但是仍旧存在⼀个问题——每⼀个 Nacos 节点都存在⼀份cluster.conf 文件,如果其中⼀个节点的 cluster.conf 文件修改失败,就造成了集群间成员节点列表数据的不⼀致性,因此,又引申出了新的寻址模式——地址服务器寻址模式。
3.3、地址服务器寻址
com.alibaba.nacos.core.cluster.lookup.AddressServerMemberLookup
地址服务器寻址模式是 Nacos 官方推荐的⼀种集群成员节点信息管理,该模式利用了⼀个简易的web 服务器,用于管理 cluster.conf 文件的内容信息,这样,运维人员只需要管理这⼀份集群成员节点内容即可,而每个 Nacos 成员节点,只需要向这个 web 节点定时请求当前最新的集群成员节点列表信息即可。
因此,通过地址服务器这种模式,大大简化了 Nacos 集群节点管理的成本,同时,地址服务器是⼀个非常简单的 web 程序,其程序的稳定性能够得到很好的保障。
4、未来可扩展点
4.1、集群节点自动扩缩容
目前,Nacos 的集群节点管理,还都是属于人工操作,因此,未来期望能够基于寻址模式,实现集群节点自动管理的功能,能够实现新的节点上线时,只需要知道原有集群中的⼀个节点信息,就可以在⼀定时间内,顺利加入原有 Nacos 集群中;同时,也能够自行发现不存活的节点,自动将其从集群可用节点列表中剔出。这⼀块的逻辑实现,其实就类似 Consul 的 Gossip 协议。
💖 Spring家族及微服务系列文章
✨【Spring】一文带你吃透IOC容器技术
✨【微服务】SpringCloud中OpenFeign请求处理及负载均衡流程
✨【微服务】SpringCloud中Ribbon的WeightedResponseTimeRule策略
✨【微服务】SpringCloud中Ribbon的轮询(RoundRobinRule)与重试(RetryRule)策略
✨【微服务】SpringCloud中Ribbon集成Eureka实现负载均衡
✨【微服务】SpringCloud轮询拉取注册表及服务发现源码解析
✨【微服务】SpringCloud微服务续约源码解析
✨【微服务】SpringCloud微服务注册源码解析
✨【微服务】Nacos2.x服务发现?RPC调用?重试机制?
✨【微服务】Nacos通知客户端服务变更以及重试机制
✨【微服务】Nacos服务发现源码分析
✨【微服务】SpringBoot监听器机制以及在Nacos中的应用
✨【微服务】Nacos服务端完成微服务注册以及健康检查流程
✨【微服务】Nacos客户端微服务注册原理流程
✨【微服务】SpringCloud中使用Ribbon实现负载均衡的原理
✨【微服务】SpringBoot启动流程注册FeignClient
✨【微服务】SpringBoot启动流程初始化OpenFeign的入口
✨Spring Bean的生命周期
✨Spring事务原理
✨SpringBoot自动装配原理机制及过程
✨SpringBoot获取处理器流程
✨SpringBoot中处理器映射关系注册流程
✨Spring5.x中Bean初始化流程
✨Spring中Bean定义的注册流程
✨Spring的处理器映射器与适配器的架构设计
✨SpringMVC执行流程图解及源码