【MySql】10- 实践篇(八)

news2024/11/17 0:50:24

文章目录

    • 1. 用动态的观点看加锁
      • 1.1 不等号条件里的等值查询
      • 1.2 等值查询的过程
      • 1.3 怎么看死锁?
      • 1.4 怎么看锁等待?
      • 1.5 update 的例子
    • 2. 误删数据后怎么办?
      • 2.1 删除行
      • 2.2 误删库/表
      • 2.3 延迟复制备库
      • 2.4 预防误删库 / 表的方法
        • 2.4.1 账号分离
        • 2.4.2 制定操作规范
      • 2.5 rm 删除数据
    • 3. 为何有kill不掉的语句?
      • 3.1 收到 kill 以后,线程做什么?
      • 3.2 关于客户端的误解

1. 用动态的观点看加锁

加锁规则。这个规则中,包含了两个“原则”、两个“优化”和一个“bug”:

  • 原则 1:加锁的基本单位是 next-key lock。next-key lock 是前开后闭区间。
  • 原则 2:查找过程中访问到的对象才会加锁。
  • 优化 1:索引上的等值查询,给唯一索引加锁的时候,next-key lock 退化为行锁。
  • 优化 2:索引上的等值查询,向右遍历时且最后一个值不满足等值条件的时候,next-key lock 退化为间隙锁。
  • 一个 bug:唯一索引上的范围查询会访问到不满足条件的第一个值为止。

基于下面这个表 t:

CREATE TABLE `t` (
  `id` int(11) NOT NULL,
  `c` int(11) DEFAULT NULL,
  `d` int(11) DEFAULT NULL,
  PRIMARY KEY (`id`),
  KEY `c` (`c`)
) ENGINE=InnoDB;

insert into t values(0,0,0),(5,5,5),
(10,10,10),(15,15,15),(20,20,20),(25,25,25);

1.1 不等号条件里的等值查询

看下这个例子,分析一下这条查询语句的加锁范围:

begin;
select * from t where id>9 and id<12 order by id desc for update;

利用上面的加锁规则,这个语句的加锁范围是主键索引上的 (0,5]、(5,10]和 (10, 15)。也就是说,id=15 这一行,并没有被加上行锁。

加锁单位是 next-key lock,都是前开后闭区间,但是这里用到了优化 2,即索引上的等值查询,向右遍历的时候 id=15 不满足条件,所以 next-key lock 退化为了间隙锁 (10, 15)。

查询语句中 where 条件是大于号和小于号,这里的“等值查询”又是从哪里来的呢?这里先拆解一下加锁过程

图 1 索引 id 示意图
图 1 索引 id 示意图

  1. 首先这个查询语句的语义是 order by id desc,要拿到满足条件的所有行,优化器必须先找到“第一个 id<12 的值”。
  2. 这个过程是通过索引树的搜索过程得到的,在引擎内部,其实是要找到 id=12 的这个值,只是最终没找到,但找到了 (10,15) 这个间隙。
  3. 然后向左遍历,在遍历过程中,就不是等值查询了,会扫描到 id=5 这一行,所以会加一个 next-key lock (0,5]。

也就是说,在执行过程中,通过树搜索的方式定位记录的时候,用的是“等值查询”的方法。

1.2 等值查询的过程

这个语句的加锁范围是什么?

begin;
select id from t where c in(5,20,10) lock in share mode;

先来看这条语句的 explain 结果

图 2 in 语句的 explain 结果
图 2 in 语句的 explain 结果
可以看出,这条 in 语句使用了索引 c 并且 rows=3,说明这三个值都是通过 B+ 树搜索定位的。

在查找 c=5 的时候,先锁住了 (0,5]。但是因为 c 不是唯一索引,为了确认还有没有别的记录 c=5,就要向右遍历,找到 c=10 才确认没有了,这个过程满足优化 2,所以加了间隙锁 (5,10)。
同样的,执行 c=10 这个逻辑的时候,加锁的范围是 (5,10] 和 (10,15);
执行 c=20 这个逻辑的时候,加锁的范围是 (15,20] 和 (20,25)。

这条语句在索引 c 上加的三个记录锁的顺序是:先加 c=5 的记录锁,再加 c=10 的记录锁,最后加 c=20 的记录锁。

这些锁是“在执行过程中一个一个加的”,而不是一次性加上去的。

有另外一个语句,是这么写的:

select id from t where c in(5,20,10) order by c desc for update;

间隙锁是不互锁的,但是这两条语句都会在索引 c 上的 c=5、10、20 这三行记录上加记录锁。

这里需要注意一下,由于语句里面是 order by c desc, 这三个记录锁的加锁顺序,是先锁 c=20,然后 c=10,最后是 c=5。

也就是说,这两条语句要加锁相同的资源,但是加锁顺序相反。当这两条语句并发执行的时候,就可能出现死锁。

1.3 怎么看死锁?

图 3 是在出现死锁后,执行 show engine innodb status 命令得到的部分输出。

这个命令会输出很多信息,有一节 LATESTDETECTED DEADLOCK,就是记录的最后一次死锁信息。

图 3 死锁现场
图 3 死锁现场

这图中的几个关键信息:

  1. 这个结果分成三部分:
  • (1) TRANSACTION,是第一个事务的信息;
  • (2) TRANSACTION,是第二个事务的信息;
  • WE ROLL BACK TRANSACTION (1),是最终的处理结果,表示回滚了第一个事务。
  1. 第一个事务的信息中:
  • WAITING FOR THIS LOCK TO BE GRANTED,表示的是这个事务在等待的锁信息;
  • index c of table test.t,说明在等的是表 t 的索引 c 上面的锁;
  • lock mode S waiting 表示这个语句要自己加一个读锁,当前的状态是等待中;
  • Record lock 说明这是一个记录锁;
  • n_fields 2 表示这个记录是两列,也就是字段 c 和主键字段 id;
  • 0: len 4; hex 0000000a; asc ;; 是第一个字段,也就是 c。值是十六进制 a,也就是 10;
  • 1: len 4; hex 0000000a; asc ;; 是第二个字段,也就是主键 id,值也是 10;
  • 这两行里面的 asc 表示的是,接下来要打印出值里面的“可打印字符”,但 10 不是可打印字符,因此就显示空格。
  • 第一个事务信息就只显示出了等锁的状态,在等待 (c=10,id=10) 这一行的锁。
  • 当然,既然出现死锁了,就表示这个事务也占有别的锁,但是没有显示出来。别着急,从第二个事务的信息中推导出来。
  1. 第二个事务显示的信息
  • “ HOLDS THE LOCK(S)”用来显示这个事务持有哪些锁;
  • index c of table test.t 表示锁是在表 t 的索引 c 上;
  • hex 0000000a 和 hex 00000014 表示这个事务持有 c=10 和 c=20 这两个记录锁;
  • WAITING FOR THIS LOCK TO BE GRANTED,表示在等 (c=5,id=5) 这个记录锁。

从上面这些信息中,我们就知道:

  1. “lock in share mode”的这条语句,持有 c=5 的记录锁,在等 c=10 的锁;
  2. “for update”这个语句,持有 c=20 和 c=10 的记录锁,在等 c=5 的记录锁。

因此导致了死锁。这里可以得到两个结论:

  1. 由于锁是一个个加的,要避免死锁,对同一组资源,要按照尽量相同的顺序访问;
  2. 在发生死锁的时刻,for update 这条语句占有的资源更多,回滚成本更大,所以 InnoDB 选择了回滚成本更小的 lock in share mode 语句,来回滚。

1.4 怎么看锁等待?

图 4 delete 导致间隙变化
图 4 delete 导致间隙变化
可以看到,由于 session A 并没有锁住 c=10 这个记录,所以 session B 删除 id=10 这一行是可以的。但是之后,session B 再想 insert id=10 这一行回去就不行了。

看一下此时 show engine innodb status 的结果

图 5 锁等待信息
图 5 锁等待信息
几个关键信息:

  1. index PRIMARY of table test.t ,表示这个语句被锁住是因为表 t 主键上的某个锁。
  2. lock_mode X locks gap before rec insert intention waiting 这里有几个信息:
  • insert intention 表示当前线程准备插入一个记录,这是一个插入意向锁。为了便于理解,你可以认为它就是这个插入动作本身。
  • gap before rec 表示这是一个间隙锁,而不是记录锁。
  1. 那么这个 gap 是在哪个记录之前的呢?接下来的 0~4 这 5 行的内容就是这个记录的信息。
  2. n_fields 5 也表示了,这一个记录有 5 列:
  • 0: len 4; hex 0000000f; asc ;; 第一列是主键 id 字段,十六进制 f 就是 id=15。所以,这时我们就知道了,这个间隙就是 id=15 之前的,因为 id=10 已经不存在了,它表示的就是 (5,15)。
  • 1: len 6; hex 000000000513; asc ;; 第二列是长度为 6 字节的事务 id,表示最后修改这一行的是 trx id 为 1299 的事务。
  • 2: len 7; hex b0000001250134; asc % 4;; 第三列长度为 7 字节的回滚段信息。可以看到,这里的 acs 后面有显示内容 (% 和 4),这是因为刚好这个字节是可打印字符。
  • 后面两列是 c 和 d 的值,都是 15。

因此,就知道了,由于 delete 操作把 id=10 这一行删掉了,原来的两个间隙 (5,10)、(10,15)变成了一个 (5,15)。

session A 执行完 select 语句后,什么都没做,但它加锁的范围突然“变大”了;
所谓“间隙”,其实根本就是由“这个间隙右边的那个记录”定义的。

1.5 update 的例子

图 6 update 的例子
图 6 update 的例子
session A 的加锁范围是索引 c 上的 (5,10]、(10,15]、(15,20]、(20,25]和 (25,supremum]。

注意:根据 c>5 查到的第一个记录是 c=10,因此不会加 (0,5]这个 next-key lock。

之后 session B 的第一个 update 语句,要把 c=5 改成 c=1,可以理解为两步:

  1. 插入 (c=1, id=5) 这个记录;
  2. 删除 (c=5, id=5) 这个记录。

按照上一节说的,索引 c 上 (5,10) 间隙是由这个间隙右边的记录,也就是 c=10 定义的。所以通过这个操作,session A 的加锁范围变成了图 7 所示的样子:

图 7 session B 修改后, session A 的加锁范围
图 7 session B 修改后, session A 的加锁范围
接下来 session B 要执行 update t set c = 5 where c = 1 这个语句了,一样地可以拆成两步:

  1. 插入 (c=5, id=5) 这个记录;
  2. 删除 (c=1, id=5) 这个记录。

第一步试图在已经加了间隙锁的 (1,10) 中插入数据,所以就被堵住了。


思考
一个空表有间隙吗?这个间隙是由谁定义的?怎么验证这个结论呢?

一个空表就只有一个间隙。
在空表上执行:begin; select * from t where id>1 for update;
这个查询语句加锁的范围就是 next-key lock (-∞, supremum]。

验证方法

复现空表的 next-key lock
复现空表的 next-key lock

show engine innodb status 部分结果
show engine innodb status 部分结果


2. 误删数据后怎么办?

先对和 MySQL 相关的误删数据,做下分类:

  1. 使用 delete 语句误删数据行;
  2. 使用 drop table 或者 truncate table 语句误删数据表;
  3. 使用 drop database 语句误删数据库;
  4. 使用 rm 命令误删整个 MySQL 实例。

2.1 删除行

使用 delete 语句误删了数据行,可以用 Flashback 工具通过闪回把数据恢复回来。
原理是:

修改 binlog 的内容,拿回原库重放。而能够使用这个方案的前提是,需要确保 binlog_format=row 和 binlog_row_image=FULL。

具体恢复数据时,对单个事务做如下处理:

  1. 对于 insert 语句,对应的 binlog event 类型是 Write_rows event,把它改成 Delete_rows event 即可;
  2. 同理,对于 delete 语句,也是将 Delete_rows event 改为 Write_rows event;
  3. 而如果是 Update_rows 的话,binlog 里面记录了数据行修改前和修改后的值,对调这两行的位置即可。

如果误操作不是一个,而是多个,会怎么样呢?比如下面三个事务:

(A)delete ...
(B)insert ...
(C)update ...

要把数据库恢复回这三个事务操作之前的状态,用 Flashback 工具解析 binlog 后,写回主库的命令是:

(reverse C)update ...
(reverse B)delete ...
(reverse A)insert ...

也就是说,如果误删数据涉及到了多个事务的话,需要将事务的顺序调过来再执行。

需要说明的是,不建议你直接在主库上执行这些操作。
恢复数据比较安全的做法,是恢复出一个备份,或者找一个从库作为临时库,在这个临时库上执行这些操作,然后再将确认过的临时库的数据,恢复回主库。

这是因为,一个在执行线上逻辑的主库,数据状态的变更往往是有关联的。可能由于发现数据问题的时间晚了一点儿,就导致已经在之前误操作的基础上,业务代码逻辑又继续修改了其他数据。所以,如果这时候单独恢复这几行数据,而又未经确认的话,就可能会出现对数据的二次破坏。

不止要说误删数据的事后处理办法,更重要是要做到事前预防。有以下两个建议:

  1. 把 sql_safe_updates 参数设置为 on。这样一来,如果我们忘记在 delete 或者 update 语句中写 where 条件,或者 where 条件里面没有包含索引字段的话,这条语句的执行就会报错。
  2. 代码上线前,必须经过 SQL 审计。

设置了 sql_safe_updates=on,如果真的要把一个小表的数据全部删掉,应该怎么办呢?
如果确定这个删除操作没问题的话,可以在 delete 语句中加上 where 条件,比如 where id>=0。

但是,delete 全表是很慢的,需要生成回滚日志、写 redo、写 binlog。

所以,从性能角度考虑,你该优先考虑使用 truncate table 或者 drop table 命令。

2.2 误删库/表

这种情况下,要想恢复数据,就需要使用全量备份,加增量日志的方式了。这个方案要求线上有定期的全量备份,并且实时备份 binlog。

在这两个条件都具备的情况下,假如有人中午 12 点误删了一个库,恢复数据的流程如下:

  1. 取最近一次全量备份,假设这个库是一天一备,上次备份是当天 0 点;
  2. 用备份恢复出一个临时库;
  3. 从日志备份里面,取出凌晨 0 点之后的日志;
  4. 把这些日志,除了误删除数据的语句外,全部应用到临时库。

流程的示意图如下所示:

图 1 数据恢复流程 -mysqlbinlog 方法
图 1 数据恢复流程 -mysqlbinlog 方法
说明:

  1. 为了加速数据恢复,如果这个临时库上有多个数据库,可以在使用 mysqlbinlog 命令时,加上一个–database 参数,用来指定误删表所在的库。这样,就避免了在恢复数据时还要应用其他库日志的情况。
  2. 在应用日志的时候,需要跳过 12 点误操作的那个语句的 binlog:
  • 如果原实例没有使用 GTID 模式,只能在应用到包含 12 点的 binlog 文件的时候,先用–stop-position 参数执行到误操作之前的日志,然后再用–start-position 从误操作之后的日志继续执行;
  • 如果实例使用了 GTID 模式,就方便多了。假设误操作命令的 GTID 是 gtid1,那么只需要执行 set gtid_next=gtid1;begin;commit; 先把这个 GTID 加到临时实例的 GTID 集合,之后按顺序执行 binlog 的时候,就会自动跳过误操作的语句。

不过,即使这样,使用 mysqlbinlog 方法恢复数据还是不够快,主要原因有两个:

  1. 如果是误删表,最好就是只恢复出这张表,也就是只重放这张表的操作,但是 mysqlbinlog 工具并不能指定只解析一个表的日志;
  2. 用 mysqlbinlog 解析出日志应用,应用日志的过程就只能是单线程。

一种加速的方法是,在用备份恢复出临时实例之后,将这个临时实例设置成线上备库的从库,这样:

  1. 在 start slave 之前,先通过执行change replication filter replicate_do_table = (tbl_name) 命令,就可以让临时库只同步误操作的表;
  2. 这样做也可以用上并行复制技术,来加速整个数据恢复过程。

过程的示意图如下所示:

图 2 数据恢复流程 -master-slave 方法
图 2 数据恢复流程 -master-slave 方法

图中 binlog 备份系统到线上备库有一条虚线,是指如果由于时间太久,备库上已经删除了临时实例需要的 binlog 的话,我们可以从 binlog 备份系统中找到需要的 binlog,再放回备库中。

假设,发现当前临时实例需要的 binlog 是从 master.000005 开始的,但是在备库上执行 show binlogs 显示的最小的 binlog 文件是 master.000007,意味着少了两个 binlog 文件。这时,我们就需要去 binlog 备份系统中找到这两个文件。

把之前删掉的 binlog 放回备库的操作步骤,是这样的:

  1. 从备份系统下载 master.000005 和 master.000006 这两个文件,放到备库的日志目录下;
  2. 打开日志目录下的 master.index 文件,在文件开头加入两行,内容分别是 “./master.000005”和“./master.000006”;
  3. 重启备库,目的是要让备库重新识别这两个日志文件;
  4. 现在这个备库上就有了临时库需要的所有 binlog 了,建立主备关系,就可以正常同步了。

不论是把 mysqlbinlog 工具解析出的 binlog 文件应用到临时库,还是把临时库接到备库上,这两个方案的共同点是:误删库或者表后,恢复数据的思路主要就是通过备份,再加上应用 binlog 的方式。

就是说,这两个方案都要求备份系统定期备份全量日志,而且需要确保 binlog 在被从本地删除之前已经做了备份。

但是,一个系统不可能备份无限的日志,还需要根据成本和磁盘空间资源,设定一个日志保留的天数。

建议
不论使用上述哪种方式,都要把这个数据恢复功能做成自动化工具,并且经常拿出来演练。

  1. 虽然“发生这种事,大家都不想的”,但是万一出现了误删事件,能够快速恢复数据,将损失降到最小,也应该不用跑路了。
  2. 如果临时再手忙脚乱地手动操作,最后又误操作了,对业务造成了二次伤害,那就说不过去了。

2.3 延迟复制备库

虽然可以通过利用并行复制来加速恢复数据的过程,但是这个方案仍然存在“恢复时间不可控”的问题。

如果一个库的备份特别大,或者误操作的时间距离上一个全量备份的时间较长,比如一周一备的实例,在备份之后的第 6 天发生误操作,那就需要恢复 6 天的日志,这个恢复时间可能是要按天来计算的。

有什么方法可以缩短恢复数据需要的时间呢?

如果有非常核心的业务,不允许太长的恢复时间,我们可以考虑搭建延迟复制的备库
这个功能是 MySQL 5.6 版本引入的。

一般的主备复制结构存在的问题是,如果主库上有个表被误删了,这个命令很快也会被发给所有从库,进而导致所有从库的数据表也都一起被误删了。

延迟复制的备库是一种特殊的备库,通过 CHANGE MASTER TO MASTER_DELAY = N 命令,可以指定这个备库持续保持跟主库有 N 秒的延迟。

比如把 N 设置为 3600,这就代表了如果主库上有数据被误删了,并且在 1 小时内发现了这个误操作命令,这个命令就还没有在这个延迟复制的备库执行。
这时候到这个备库上执行 stop slave,再通过之前介绍的方法,跳过误操作命令,就可以恢复出需要的数据。

这样的话,就随时可以得到一个,只需要最多再追 1 小时,就可以恢复出数据的临时实例,也就缩短了整个数据恢复需要的时间。

2.4 预防误删库 / 表的方法

2.4.1 账号分离

这样做的目的是,避免写错命令。比如:

  • 我们只给业务开发同学 DML 权限,而不给 truncate/drop 权限。而如果业务开发人员有 DDL 需求的话,也可以通过开发管理系统得到支持。
  • 即使是 DBA 团队成员,日常也都规定只使用只读账号,必要的时候才使用有更新权限的账号。
2.4.2 制定操作规范

这样做的目的,是避免写错要删除的表名。比如:

  • 在删除数据表之前,必须先对表做改名操作。然后,观察一段时间,确保对业务无影响以后再删除这张表。
  • 改表名的时候,要求给表名加固定的后缀(比如加 _to_be_deleted),然后删除表的动作必须通过管理系统执行。并且,管理系删除表的时候,只能删除固定后缀的表。

2.5 rm 删除数据

对于一个有高可用机制的 MySQL 集群来说,最不怕的就是 rm 删除数据了。只要不是恶意地把整个集群删除,而只是删掉了其中某一个节点的数据的话,HA 系统就会开始工作,选出一个新的主库,从而保证整个集群的正常工作。

这时,要做的就是在这个节点上把数据恢复回来,再接入整个集群。

现在不止是 DBA 有自动化系统,SA(系统管理员)也有自动化系统,所以也许一个批量下线机器的操作,会让你整个 MySQL 集群的所有节点都全军覆没。

应对这种情况,建议只能是说尽量把备份跨机房,或者最好是跨城市保存。


小结

  1. 预防远比处理的意义来得大;
  2. 定期检查备份的有效性也很有必要;
  3. 可以使用show grants 命令查看账户的权限,如果权限过大,可以建议 DBA 同学给你分配权限低一些的账号。

3. 为何有kill不掉的语句?

MySQL 中有两个 kill 命令:

  • 一个是 kill query + 线程 id,表示终止这个线程中正在执行的语句;
  • 一个是 kill connection + 线程 id,这里 connection 可缺省,表示断开这个线程的连接,当然如果这个线程有语句正在执行,也是要先停止正在执行的语句的。

在使用 MySQL 的时候,使用了 kill 命令,却没能断开这个连接。再执行 show processlist 命令,看到这条语句的 Command 列显示的是 Killed。我们就来讨论一下这个问题。

其实大多数情况下,kill query/connection 命令是有效的。比如,执行一个查询的过程中,发现执行时间太久,要放弃继续查询,这时我们就可以用 kill query 命令,终止这条查询语句。

还有一种情况是,语句处于锁等待的时候,直接使用 kill 命令也是有效的。我们一起来看下这个例子:

图 1 kill query 成功的例子
图 1 kill query 成功的例子

看到,session C 执行 kill query 以后,session B 几乎同时就提示了语句被中断。

3.1 收到 kill 以后,线程做什么?

session B 是直接终止掉线程,什么都不管就直接退出吗?显然,这是不行的。

当对一个表做增删改查操作时,会在表上加 MDL 读锁。所以,session B 虽然处于 blocked 状态,但还是拿着一个 MDL 读锁的。如果线程被 kill 的时候,就直接终止,那之后这个 MDL 读锁就没机会被释放了。

kill 并不是马上停止的意思,而是告诉执行线程说,这条语句已经不需要继续执行了,可以开始“执行停止的逻辑了”。

实现上,当用户执行 kill query thread_id_B 时,MySQL 里处理 kill 命令的线程做了两件事:

  1. 把 session B 的运行状态改成 THD::KILL_QUERY(将变量 killed 赋值为 THD::KILL_QUERY);
  2. 给 session B 的执行线程发一个信号。

为什么要发信号呢?

因为像图 1 的我们例子里面,session B 处于锁等待状态,如果只是把 session B 的线程状态设置 THD::KILL_QUERY,线程 B 并不知道这个状态变化,还是会继续等待。发一个信号的目的,就是让 session B 退出等待,来处理这个 THD::KILL_QUERY 状态。

这里隐含了这么三层意思:

  1. 一个语句执行过程中有多处“埋点”,在这些“埋点”的地方判断线程状态,如果发现线程状态是 THD::KILL_QUERY,才开始进入语句终止逻辑;
  2. 如果处于等待状态,必须是一个可以被唤醒的等待,否则根本不会执行到“埋点”处;
  3. 语句从开始进入终止逻辑,到终止逻辑完全完成,是有一个过程的。

再看一个 kill 不掉的例子
innodb_thread_concurrency 不够用的例子。首先,执行 set global innodb_thread_concurrency=2,将 InnoDB 的并发线程上限数设置为 2;然后,执行下面的序列:

图 2 kill query 无效的例子
图 2 kill query 无效的例子

可以看到:

  1. sesssion C 执行的时候被堵住了;
  2. 但是 session D 执行的 kill query C 命令却没什么效果,
  3. 直到 session E 执行了 kill connection 命令,才断开了 session C 的连接,提示“Lost connection to MySQL server during query”,
  4. 但是这时候,如果在 session E 中执行 show processlist,你就能看到下面这个图

图 3 kill connection 之后的效果
这时候,id=12 这个线程的 Commnad 列显示的是 Killed。也就是说,客户端虽然断开了连接,但实际上服务端上这条语句还在执行过程中。

为什么在执行 kill query 命令时,这条语句不像第一个例子的 update 语句一样退出呢?

在实现上,等行锁时,使用的是 pthread_cond_timedwait 函数,这个等待状态可以被唤醒。但是,在这个例子里,12 号线程的等待逻辑是这样的:每 10 毫秒判断一下是否可以进入 InnoDB 执行,如果不行,就调用 nanosleep 函数进入 sleep 状态。
也就是说,虽然 12 号线程的状态已经被设置成了 KILL_QUERY,但是在这个等待进入 InnoDB 的循环过程中,并没有去判断线程的状态,因此根本不会进入终止逻辑阶段。

当 session E 执行 kill connection 命令时,是这么做的:

  1. 把 12 号线程状态设置为 KILL_CONNECTION;
  2. 关掉 12 号线程的网络连接。因为有这个操作,所以你会看到,这时候 session C 收到了断开连接的提示。

为什么执行 show processlist 的时候,会看到 Command 列显示为 killed 呢?其实,这就是因为在执行 show processlist 的时候,有一个特别的逻辑:

如果一个线程的状态是KILL_CONNECTION,就把Command列显示成Killed。

其实,即使是客户端退出了,这个线程的状态仍然是在等待中。

那这个线程什么时候会退出呢?

只有等到满足进入 InnoDB 的条件后,session C 的查询语句继续执行,然后才有可能判断到线程状态已经变成了 KILL_QUERY 或者 KILL_CONNECTION,再进入终止逻辑阶段。


小结一下:
这个例子是 kill 无效的第一类情况,即:线程没有执行到判断线程状态的逻辑。跟这种情况相同的,还有由于 IO 压力过大,读写 IO 的函数一直无法返回,导致不能及时判断线程的状态。

另一类情况是,终止逻辑耗时较长。这时候,从 show processlist 结果上看也是 Command=Killed,需要等到终止逻辑完成,语句才算真正完成。

这类情况,比较常见的场景有以下几种:

  1. 超大事务执行期间被 kill。这时候,回滚操作需要对事务执行期间生成的所有新数据版本做回收操作,耗时很长。
  2. 大查询回滚。如果查询过程中生成了比较大的临时文件,加上此时文件系统压力大,删除临时文件可能需要等待 IO 资源,导致耗时较长。
  3. DDL 命令执行到最后阶段,如果被 kill,需要删除中间过程的临时文件,也可能受 IO 资源影响耗时较久。

如果直接在客户端通过 Ctrl+C 命令,是不是就可以直接终止线程呢?

不可以。其实在客户端的操作只能操作到客户端的线程,客户端和服务端只能通过网络交互,是不可能直接操作服务端线程的。
而由于 MySQL 是停等协议,所以这个线程执行的语句还没有返回的时候,再往这个连接里面继续发命令也是没有用的。实际上,执行 Ctrl+C 的时候,是 MySQL 客户端另外启动一个连接,然后发送一个 kill query 命令。

3.2 关于客户端的误解

第一个误解:如果库里面的表特别多,连接就会很慢。
图 4 连接等待
图 4 连接等待

每个客户端在和服务端建立连接的时候,需要做的事情就是 TCP 握手、用户校验、获取权限。但这几个操作,显然跟库里面表的个数无关。
但实际上,正如图中的文字提示所说的,当使用默认参数连接的时候,MySQL 客户端会提供一个本地库名和表名补全的功能。为了实现这个功能,客户端在连接成功后,需要多做一些操作:

  1. 执行 show databases;
  2. 切到 db1 库,执行 show tables;
  3. 把这两个命令的结果用于构建一个本地的哈希表。

在这些操作中,最花时间的就是第三步在本地构建哈希表的操作。所以,当一个库中的表个数非常多的时候,这一步就会花比较长的时间。也就是说,感知到的连接过程慢,其实并不是连接慢,也不是服务端慢,而是客户端慢。

图中的提示也说了,如果在连接命令中加上 -A,就可以关掉这个自动补全的功能,然后客户端就可以快速返回了。除了加 -A 以外,加–quick(或者简写为 -q) 参数,也可以跳过这个阶段

第二个误解:–quick 是一个更容易引起误会的参数。

是不是觉得这应该是一个让服务端加速的参数?但实际上恰恰相反,设置了这个参数可能会降低服务端的性能。
MySQL 客户端发送请求后,接收服务端返回结果的方式有两种:

  1. 一种是本地缓存,也就是在本地开一片内存,先把结果存起来。如果用 API 开发,对应的就是 mysql_store_result 方法。
  2. 另一种是不缓存,读一个处理一个。如果用 API 开发,对应的就是 mysql_use_result 方法。

MySQL 客户端默认采用第一种方式,而如果加上–quick 参数,就会使用第二种不缓存的方式。
采用不缓存的方式时,如果本地处理得慢,就会导致服务端发送结果被阻塞,因此会让服务端变慢。

既然这样,为什么要给这个参数取名叫作 quick 呢?这是因为使用这个参数可以达到以下三点效果:

  1. 第一点,就是前面提到的,跳过表名自动补全功能。
  2. 第二点,mysql_store_result 需要申请本地内存来缓存查询结果,如果查询结果太大,会耗费较多的本地内存,可能会影响客户端本地机器的性能;
  3. 第三点,是不会把执行命令记录到本地的命令历史文件。

思考
如果碰到一个被 killed 的事务一直处于回滚状态,你认为是应该直接把 MySQL 进程强行重启,还是应该让它自己执行完成呢?为什么呢?

因为重启之后该做的回滚动作还是不能少的,所以从恢复速度的角度来说,应该让它自己结束。
如果这个语句可能会占用别的锁,或者由于占用 IO 资源过多,从而影响到了别的语句执行的话,就需要先做主备切换,切到新主库提供服务。

切换之后别的线程都断开了连接,自动停止执行。接下来还是等它自己执行完成。这个操作属于我们在文章中说到的,减少系统压力,加速终止逻辑。


来自林晓斌《MySql实战45讲》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1152134.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

人工智能(8):Numpy的使用

1 Numpy介绍 Numpy&#xff08;Numerical Python&#xff09;是一个开源的Python科学计算库&#xff0c;用于快速处理任意维度的数组。 Numpy支持常见的数组和矩阵操作。对于同样的数值计算任务&#xff0c;使用Numpy比直接使用Python要简洁的多。 Numpy使用ndarray对象来处理…

NSGA-II 遗传多目标算法(python示例)

一、前言 最近在准备毕业论文&#xff0c;研究了一下主流的多目标算法&#xff0c;对于NSGA-II&#xff0c;网上大部分代码是全部是面向过程来实现的&#xff0c;本人更喜欢采用面向对象的方式&#xff0c;故采用python面向对象实现了一个示例&#xff0c;实现了对于二元多目标…

1400*C. Element Extermination(贪心规律)

Problem - 1375C - Codeforces 解析&#xff1a; 可以发现&#xff0c;最左端的数字&#xff0c;无论删除自己还是下一个&#xff0c;这个位置的值都不会变小。 同理&#xff0c;最右端位置的值都不会变大。 所以当最后剩余两个数字的时候&#xff0c;只有左端小于右端数字&…

STM32—PWM开发SG90舵机

目录 PWM介绍 PWM输出模式&#xff1a; ​编辑PWM占空比&#xff1a; PWM周期与频率公式&#xff1a;​编辑 SG90舵机介绍 1. 什么是舵机 2. 怎么控制舵机 SG90舵机介绍实战 1. 在 SYS 选项里&#xff0c;将 Debug 设为 Serial Wire​编辑 2. 将 RCC 里的 HSE 设置为 …

Vue的快速入门

Vue的快速入门 下载并安装vue.js Vue是一个基于JavaScript实现的框架, 要使用它就需要从[Vue官网]((https://cn.vuejs.org/)下载 vue.js 文件 第一步&#xff1a;打开Vue2官网&#xff0c;点击下图所示的“起步” 第二步&#xff1a;继续点击下图所示的“安装” 第三步&…

二叉树的遍历+二叉树的基本操作

文章目录 二叉树的操作一、 二叉树的存储1.二叉树的存储结构 二、 二叉树的基本操作1.前置创建一棵二叉树&#xff1a;1. 定义结点 2.简单的创建二叉树 2.二叉数的遍历1.前序遍历2.中序遍历3.后序遍历4.层序遍历 3.二叉树的操作1.获取树中节点的个数2.获取叶子节点的个数3.获取…

PHP的Excel导出与导入

下载地址&#xff08;注意php版本大于7.3可能会报错&#xff09; GitHub - PHPOffice/PHPExcel: ARCHIVED 解压 1、导出 Excel $data[[name>a,age>11],[name>b,age>22],[name>d,age>33], ]; $fileds["name">"名称","age"…

在Java和PostgreSQL枚举之间进行转换的通用方法

枚举类型&#xff08;enum&#xff09;是一种方便的数据类型&#xff0c;允许我们指定一个常量列表&#xff0c;对象字段或数据库列可以设置为该列表中的值。 枚举的美妙之处在于我们可以通过提供人类可读格式的枚举常量来确保数据完整性。因此&#xff0c;Java和PostgreSQL原…

MySQL 8.2 支持读写分离!

我们一直在等待的 MySQL 读/写分离功能 现在终于可以使用了&#xff01; 在规模上&#xff0c;我们在副本之间分配读取&#xff0c;但这必须在应用程序中以某种方式进行管理&#xff1a;指向在某个地方写入并在其他地方读取。 在 MySQL 8.2 中&#xff0c;MySQL Router 现在能…

SSH 无密登录设置

1 &#xff09; 配置 ssh &#xff08;1&#xff09;基本语法 ssh 另一台电脑的 IP 地址&#xff08;2&#xff09;ssh 连接时出现 Host key verification failed 的解决方法 [libaihadoop102 ~]$ ssh hadoop103 ➢ 如果出现如下内容 Are you sure you want to continue c…

设计模式(20)职责链模式

一、介绍&#xff1a; 1、定义&#xff1a;责任链模式&#xff08;Chain of Responsibility Pattern&#xff09;是一种行为设计模式&#xff0c;使多个对象都有机会处理请求&#xff0c;从而避免请求的发送者和接收者之间的耦合关系。将这个对象连成一条链&#xff0c;并沿着…

SpringSecurity6从入门到上天系列第二篇:搭建SpringSecurity6的入门级别程序!

文章目录 前言 1&#xff1a;环境要求 2&#xff1a;技术要求 一&#xff1a;搭建SpringBoot环境 1&#xff1a;创建空项目 2&#xff1a;创建SpringBoot项目 3&#xff1a;编写一个简单的controller 二&#xff1a;整合SpringSecurity 1&#xff1a;引入依赖 2&…

微信小程序设计之目录结构其他文件介绍

一、新建一个项目 首先&#xff0c;下载微信小程序开发工具&#xff0c;具体下载方式可以参考文章《微信小程序开发者工具下载》。 然后&#xff0c;注册小程序账号&#xff0c;具体注册方法&#xff0c;可以参考文章《微信小程序个人账号申请和配置详细教程》。 在得到了测…

Linux基础环境开发工具的使用(yum,vim,gcc,g++)

Linux基础环境开发工具的使用[yum,vim,gcc,g] 一.yum1.yum的快速入门1.yum安装软件2.yum卸载软件 2.yum的生态环境1.操作系统的分化2.四个问题1.服务器是谁提供的呢?2.服务器上的软件是谁提供的呢?3.为什么要提供呢?4.yum是如何得知目标服务器的地址和下载链接呢?5.软件源 …

XML教学视频(黑马程序员精讲 XML 知识!)笔记

第一章XML概述 1.1认识XML XML数据格式&#xff1a; 不是html但又和html有点相似 XML数据格式最主要的功能就是数据传输&#xff08;一个服务器到另一个服务器&#xff0c;一个网站到另一个网站&#xff09;配置文件、储存数据当做小型数据可使用、规范数据格式让数据具有结…

TypeScript深度剖析:TypeScript 中接口的应用场景?

一、是什么 接口是一系列抽象方法的声明&#xff0c;是一些方法特征的集合&#xff0c;这些方法都应该是抽象的&#xff0c;需要由具体的类去实现&#xff0c;然后第三方就可以通过这组抽象方法调用&#xff0c;让具体的类执行具体的方法 简单来讲&#xff0c;一个接口所描述…

PHP自定义文件缓存实现

文件缓存&#xff1a;可以将PHP脚本的执行结果缓存到文件中。当一个PHP脚本被请求时&#xff0c;先查看是否存在缓存文件&#xff0c;如果存在且未过期&#xff0c;则直接读取缓存文件内容返回给客户端&#xff0c;而无需执行脚本 1、文件缓存写法一&#xff0c;每个文件缓存一…

优化改进YOLOv5算法:加入SPD-Conv模块,让小目标无处遁形——(超详细)

1 SPD-Conv模块 论文:https://arxiv.org/pdf/2208.03641v1.pdf 摘要:卷积神经网络(CNNs)在计算即使觉任务中如图像分类和目标检测等取得了显著的成功。然而,当图像分辨率较低或物体较小时,它们的性能会灾难性下降。这是由于现有CNN常见的设计体系结构中有缺陷,即使用卷积…

对PySide6 say Hello(包含环境配置) ——PyQt

前言 一直想学一下python&#xff0c;特别是十一前抢票时达到顶峰。我正好是Qter&#xff0c;所以在网上找了一个教程直接学PyQt。 配置PyQt环境 当前环境 Win10Qt5.15.2 python3.11 之前安装python时好像自动安装了python的包管理工具pip&#xff0c;配置pyqt环境所需要安装…

css:transform实现平移、旋转、缩放、倾斜元素

目录 文档语法示例旋转元素 transform-rotate旋转过渡旋转动画 参考文章 文档 https://developer.mozilla.org/zh-CN/docs/Web/CSS/transform 语法 /* Keyword values */ transform: none;/* Function values */ transform: matrix(1, 2, 3, 4, 5, 6); transform: translate…