目录
- 学习目的
- 软件版本
- 原始文档
- 配对样本均数T检验
- 一、实战案例
- 二、案例解析
- 三、统计策略
- 四、SPSS操作
- 1、正态性检验
- 2、配对样本T检验
- 五、结果解读
- 六、规范报告
- 1、规范表格
- 2、规范文字
- 划重点
- Tips:SPSS常用的快捷键
学习目的
SPSS第六讲 | 配对样本均数T检验
软件版本
IBM SPSS Statistics 26。
原始文档
《小白爱上SPSS》课程
#统计原理
配对样本均数T检验
配对样本均数T检验,指的是使受试对象在某一或者某些状况、特征因素上相同或者基本相同的试验设计。
上一讲的两独立样本T检验的两组数据是独立的,无关联的。而配对样本T检验中,两组样本数据是匹配的,存有关联的。
配对样本T检验常常用于实验性研究设计中,主要有三种方案。
两种同质受试对象分别接受两种不同的处理(异体配对)
同一受试对象接受两组不同的处理(自身平行配对)
同一对象处理前后的结果进行比较(自身前后配对)
一、实战案例
小白想研究长时间持续运动对血尿酸浓度(mg%)的影响,让10名大侠在自行车功力计上持续运动上两个小时(负荷为100W/min),问长时间持续运动对大侠的血尿酸浓度有无影响?
读取数据:
GET
FILE='E:\*************\小白爱上SPSS\小白数据\第六讲 配对样本t 检验.sav'.
二、案例解析
看到两组数据,小白比较迷惑:到底是采用两独立样本T检验还是配对样本T检验?答案很简单,关键看两样本是独立还是关联。两独立样本均数T检验主要是两组【独立】样本比较,比如男生和女生的身高比较。而配对样本均数T检验的两组样本是有关联的。比如本案例是同一样本进行前后比较,个体的运动前和运动后的血尿酸浓度存有关联,属于自身前后配对。因此,初步判断,可采用配对样本均数的T检验。
三、统计策略
统计分析策略口诀“目的引导设计,变量确定方法”。
针对上述案例,扪心六问。
Q1:本案例研究目的是什么?
A:比较差异。比较运动干预前后两组的总体均数是否存有差异
Q2:比较的组数是多少呢?
A:两组数据,且这两组数据前后匹配
Q3:本案例属于什么研究设计?
A:实验性研究
Q4:有几个变量?
A:两个变量。其中,测试次序是分组变量,血尿酸浓度是结局变量
Q5:变量类型是什么?
A:一个分组(分类)变量,分成前测和后测两组;另一个连续型变量,血尿酸浓度
Q6:连续型变量服从正态分布么?
A:需要对前后测量的差值进行检验,而不是两组的正态性检验。若服从,采用配对样本T检验;若不服从正态,采用配对秩和检验。
概括而言,如果数据满足以下条件,则采用配对样本T检验。
四、SPSS操作
1、正态性检验
配对样本T检验的主要检验两组差值数据是否服从正态分布,为此,首先要计算运动干预前减去干预后的血尿酸的差值。
Step1:计算差值。
打开SPSS后,依次点击“转换”—“计算变量”,弹出对话框后,在目标变量中输入【差值】,在数据表达方式中,输入(x-y)【运动前-运动后】,注意:“运动前”和”运动后”可从类型和标签中放入。
点击确定后,在SPSS界面中就增加【差值】这一变量。
命令行:
COMPUTE 差值=x-y. /*计算差值(转换-计算变量)*/
EXECUTE /*执行*/.
Step2:对差值进行正态性检验
正态性检验的SPSS操作步骤请点击《第三讲 | 正态分布怎么检验?看这篇文章就够了》,这里只呈现检验结果。
直方图绘制:
GRAPH /HISTOGRAM(NORMAL)=差值.
正态性检验:
EXAMINE VARIABLES=差值
/PLOT BOXPLOT NPPLOT /*若无此行,则不输出正态性检验表*/
/COMPARE GROUPS
/STATISTICS DESCRIPTIVES
/CINTERVAL 95
/MISSING LISTWISE
/NOTOTAL.
本案例样本量≤50时,以夏皮洛-威尔克(S-W)检验为准,p=0.314>0.05,无统计学意义(接受原假设:数据按正态分布)。同时结合直方图,可认为差值数据服从正态性分布。
2、配对样本T检验
原始假设:两组数据无相关性。
Step1:打开SPSS,依次点击:分析→比较平均值→成对样本T检验
Step2:会出现配对数据框Variable1与Variable2,把【运动前】和【运动后】分别放进对应位置
Step3: 点击确定,就可呈现统计结果。
命令行:
T-TEST PAIRS=x WITH y (PAIRED)
/CRITERIA=CI(.9500)
/MISSING=ANALYSIS.
五、结果解读
配对t检验结果有3张表。
第1表:配对样本统计,运动前血尿酸浓度为4.55±0.89(mg%),运动后的浓度为5.67±0.68(mg%)。
第2表为两组数据相关性的统计学检验。本表不重要,它描述了配对数据的相关性程度和p值,本例相关性系数为0.529(该值范围从0-1,越大相关性越强,0.529属于具有一定的相关性,对原始假设存疑),P=0.116,表明它们相关系数没有达到显著性水平,其原因可能是样本量太少。事实上,受样本数量限制,在这里的P值没啥价值,关注相关系数即可。
第3表为配对t检验的结果,配对差值中的标准误差平均值为(.2814+.2415)/2=0.2476,(95%CI: -1.68,-0.56);检验统计量t=-4.524,p=0.001<0.05。配对差值与0值相比,差异具有统计学意义(不接受原始假设:两组数据无相关性)。
六、规范报告
规范报告有多种方式,本公众号只提供一种方式供参考。
1、规范表格
2、规范文字
由于数据服从正态分布,故采用配对样本均数的T检验。结果显示,长时间持续运动能显著提升血尿酸浓度t=-4.52,p=0.001,95%CI为(-1.68~-0.56)
小白将运动干预结果向主任报告,主任看后说:“看样子,给大侠们进行一次性运动干预还是有效果的,咱们就这么干,逐步扩大范围,让更多的组别参与干预”
小白心里嘀咕着 “更多组别,这怎么分析呀?”
主任看了小白一眼,“怎么啦,有难度吗?”
小白又一次挺直腰板说“没问题,不就是两两比较吗?”
主任向他诡异一笑,说“小白,你还是好好学习下一讲:单因素方差分析”
划重点
1、配对样本t检验来比较两个匹配样本的总体均数是否存有差异,一般用于实验性研究。
2、配对设计实验方案包括:异体配对、自身前后匹配、自身平行匹配。
3、配对样本t检验统计策略:分组变量为匹配两组、结局变量满足连续性、两组差值满足正态或近似正态分布。
Tips:SPSS常用的快捷键
引自:新手如何使用SPSS。
1.新建语法文件:Ctrl + N
2.打开数据文件:Ctrl + O
3.保存数据文件:Ctrl + S
4.关闭当前数据文件:Ctrl + F4
5.撤销上一步操作:Ctrl + Z
6.复制选中的内容:Ctrl + C
7.剪切选中的内容:Ctrl + X
8.粘贴内容:Ctrl + V
9.选择所有内容:Ctrl + A
10.运行选定项:Ctrl+R
11.关闭当前语法文件:Ctrl + F4
12.打开“数据编辑器”:Ctrl +1
13.打开“变量视图”:Ctrl +2
14.打开“输出视图”:Ctrl +3
15.打开“语法视图”:Ctrl +4