基于混合蛙跳算法的无人机航迹规划-附代码

news2024/11/15 16:31:32

基于混合蛙跳算法的无人机航迹规划

文章目录

  • 基于混合蛙跳算法的无人机航迹规划
    • 1.混合蛙跳搜索算法
    • 2.无人机飞行环境建模
    • 3.无人机航迹规划建模
    • 4.实验结果
      • 4.1地图创建
      • 4.2 航迹规划
    • 5.参考文献
    • 6.Matlab代码

摘要:本文主要介绍利用混合蛙跳算法来优化无人机航迹规划。

1.混合蛙跳搜索算法

混合蛙跳算法原理请参考:https://blog.csdn.net/u011835903/article/details/108294230

2.无人机飞行环境建模

? 环境模型的建立是考验无人机是否可以圆满完成人类所赋予各项任务的基
础和前提,其中第一步便是如何描述规划空间中的障碍物。首先我们将采取函数模拟法模拟地貌特征。其函数表达式为:
z ( x , y ) = s i n ( y + a ) + b s i n ( x ) + c c o s ( d y 2 + x 2 ) + e c o s ( y ) + f s i n ( f y 2 + x 2 ) + g c o s ( y ) (1) z(x,y)=sin(y+a)+bsin(x)+ccos(d\sqrt{y^2+x^2})+ecos(y)+fsin(f\sqrt{y^2+x^2})+gcos(y)\tag{1} z(x,y)=sin(y+a)+bsin(x)+ccos(dy2+x2 )+ecos(y)+fsin(fy2+x2 )+gcos(y)(1)
其中, ( x , y ) (x, y) (x,y) 为地形上某点投影在水平面上的点坐标, z z z 则为对应点坐标的高度。式中 a , b , c , d , e , f , g a, b, c, d, e, f , g a,b,c,d,e,f,g 是常系数,想要得到不同的地貌特征可以通过改变其常系数的大小,以上建模是作为环境模型的基准地形信息。但为了得到障碍区域我们还需要在这个基准地形上叠加山峰模型,这样就可以模拟像山峰、丘陵等障碍地理信息。山峰模型的数学表达式为:
h ( x , y ) = ∑ i h i e x p [ − ( x − x o i ) 2 a i 2 − ( y − y o i ) 2 b i 2 ] + h o (2) h(x,y)=\sum_ih_iexp[-\frac{(x-x_{oi})^2}{a_i^2}-\frac{(y-y_{oi})^2}{b_i^2}]+h_o \tag{2} h(x,y)=ihiexp[ai2(xxoi)2bi2(yyoi)2]+ho(2)
式 (2)中, h o h_o ho h i h_i hi 分别表示基准地形和第 i i i座山峰的高度, ( x o i , y o i ) (xoi , y oi ) (xoi,yoi)则表示第 i座山峰的中心坐标位置,a i 和 b i 分别是第 i 座山峰沿 x 轴和 y 轴方向的坡度。由式(1)和(2),我们可以得到如下表达式:
Z ( x , y ) = m a x [ z ( x , y ) , h ( x , y ) ] (3) Z(x,y)=max[z(x,y),h(x,y)]\tag{3} Z(x,y)=max[z(x,y),h(x,y)](3)
无人机在躲避障碍物的同时也会经常遇到具有威胁飞行安全的区域,我们称之为威胁区域。这些威胁区域可以是敌人的雷达和防空导弹系统的探测威胁区域也可以是一些其它的威胁,一旦无人机进入这些区域很有可能会被击落或者坠毁。为了简化模型,本文采用半径为 r 的圆柱形区域表示威胁区域,其半径的大小决定威胁区域的覆盖范围。每一个圆柱体的中心位置是对无人机构成最大威胁的地方并向外依次减弱。

3.无人机航迹规划建模

? 在环境建模的基础上,无人机航迹规划需要考虑到在执行复杂任务的过程中自身性能约束要求,合理的设计航迹评价函数才能使得混合蛙跳搜索算法得出的最后结果符合要求,并保证规划出的航迹是有效的。考虑到实际环境中,无人机需要不断适应变化的环境。所以在无人机路径规划过程中,最优路径会显得比较复杂,并包含许多不同的特征。基于实际的情况,本文采用较为复杂的航迹评价函数进行无人机路径规划。影响无人机性能的指标主要包括航迹长度、飞行高度、最小步长、转角代价、最大爬升角等。

? 搜索最佳路径通常与搜索最短路径是密不可分的。在无人机航迹规划过程中,航迹的长度对于大多数航迹规划任务来说也是非常重要的。众所周知,较短的路线可以节省更多的燃料和更多的时间并且发现未知威胁的几率会更低。我们一般把路径定义为无人机从起始点到终点所飞行路程的值,设一条完整的航线有 n n n个节点,其中第 i i i个航路点和第 i + 1 i+1 i+1个航路点之间的距离表示为 l i l_i li ,这两个航路点的坐标分别表示为 ( x i , y i , z i ) (x_i,y_i,z_i ) (xi,yi,zi) ( x i + 1 , y i + 1 , z i + 1 ) (x_{i+1}, y_{i+1},z_{i+1}) (xi+1,yi+1,zi+1)并分别记作 g ( i ) g(i) g(i) g ( i + 1 ) g(i+1) g(i+1)。航迹需要满足如下条件:
{ l i = ∣ ∣ g ( i + 1 ) − g ( i ) ∣ ∣ 2 L p a t h = ∑ i = 1 n − 1 l i (4) \begin{cases} l_i = ||g(i+1)-g(i)||_2\\ L_{path}=\sum_{i=1}^{n-1}l_i \end{cases}\tag{4} {li=∣∣g(i+1)g(i)2Lpath=i=1n1li(4)
在飞行的过程中会遇到障碍物或者进入威胁区域,如果无人机无法躲避障碍物或者飞入了威胁区域将面临被击落或坠毁的危险以至于无法到达终点,记为 L p a t h = ∞ L_{path}=\infty Lpath=,但是无穷函数在实际问题中很难表示,我们采用惩罚的方式进行处理。一般情况下,为了利用地形覆盖自身位置,无人机应尽可能降低高度这可以帮助自身避免一些未知雷达等威胁。但是太低的飞行高度同样会加大无人机同山体和地面的撞击几率,因此设定稳定的飞行高度是非常重要的。飞行高度不应该有太大的变化,稳定的飞行高度可以减少控制系统的负担,节省更多的燃料 。为了使无人机飞行更加安全,给出的飞行高度模型:
{ h h e i g h t = 1 n ∑ i = 0 n − 1 ( z ( i ) − z ‾ ) 2 z ‾ = 1 n ∑ i = 0 n − 1 z ( i ) (5) \begin{cases} h_{height}=\sqrt{\frac{1}{n}\sum_{i=0}^{n-1}(z(i)-\overline{z})^2}\\ \overline{z}=\frac{1}{n}\sum_{i=0}^{n-1}z(i) \end{cases}\tag{5} {hheight=n1i=0n1(z(i)z)2 z=n1i=0n1z(i)(5)
无人机的可操作性也受到其转角代价函数的限制。,在飞行过程中无人机的转角应不大于其预先设定的最大转角,转角的大小会影响其飞行的稳定性。本文的研究中,设定最大转角为 Φ Φ Φ,当前转角为 θ \theta θ并且 a i a_i ai是第 i i i段航路段向量。
{ c o s θ = a i T a i + 1 ∣ a i ∣ ∣ a i + 1 ∣ J t u r n = ∑ i = 1 n ( c o s ( Φ − c o s θ ) ) (6) \begin{cases} cos\theta =\frac{a_i^Ta_{i+1}}{|a_i||a_{i+1}|}\\ J_{turn}=\sum_{i=1}^n(cos(\Phi-cos\theta)) \end{cases}\tag{6} {cosθ=ai∣∣ai+1aiTai+1Jturn=i=1n(cos(Φcosθ))(6)
其中, ∣ a ∣ |a| a代表矢量 a a a的长度。

? 通过对以上三个方面建立了无人机航迹规划的代价函数,可以得出本文的航迹评价函数如下:
J c o s t = w 1 L p a t h + w 2 h h e i g h t + w 3 J t u r n (7) J_{cost}=w_1L_{path}+w_2h_{height}+w_3J_{turn} \tag{7} Jcost=w1Lpath+w2hheight+w3Jturn(7)
其中, J c o s t J_{cost} Jcost是总的代价函数,参数 w i w_i wi i = 1 , 2 , 3 i=1,2,3 i=1,2,3 表示每个代价函数的权值,且满足如下条件:
{ w i ≥ 0 ∑ i = 1 3 w i = 1 (8) \begin{cases} w_i\geq0 \\ \sum_{i=1}^3 w_i=1 \end{cases} \tag{8} {wi0i=13wi=1(8)
通过对总的代价函数进行有效地处理,我们可以得到由线段组成的航迹。不可否认的是得到的路径往往是仅在理论上可行,但为了实际可飞,有必要对航迹进行平滑处理。本文采用三次样条插值的方法对路径进行平滑。

4.实验结果

4.1地图创建

设置地图参数a, b, c, d, e, f , g=1。地图大小为:200*200。设置三个山峰,山峰信息如表1所示。威胁区域信息如表2所示

表1:山峰信息
信息山峰中心坐标山峰高度山峰X方向坡度山峰y方向坡度
山峰1[60,60]502020
山峰2[100,100]603030
山峰3[150,150]802020
表2 威胁区域信息
信息威胁区域中心坐标威胁区域半径
威胁区域1[150,50]30
威胁区域2[50,150]20

创建的地图如下:

在这里插入图片描述

4.2 航迹规划

设置起点坐标为[0,0,20],终点坐标为[200,200,20]。利用混合蛙跳算法对航迹评价函数式(7)进行优化。优化结果如下:

在这里插入图片描述
在这里插入图片描述

从结果来看,混合蛙跳算法规划出了一条比较好的路径,表明算法具有一定的优势。

5.参考文献

[1]薛建凯. 一种新型的群智能优化技术的研究与应用[D].东华大学,2020.DOI:10.27012/d.cnki.gdhuu.2020.000178.

6.Matlab代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1144262.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小米14系列, OPPO Find N3安装谷歌服务框架,安装Play商店,Google

10月26号小米发布了新款手机小米14,那么很多大家需求问是否支持谷歌服务框架,是否支持Google Play商店gms。因为毕竟小米公司现在安装的系统是HyperOS澎湃OS。但是我拿到手机之后会发现还是开机初始界面会显示power by android,证明这一点他还是支持安装谷歌,包括最近一段时间发…

ASEMI高压二极管CL08-RG210参数,CL08-RG210封装

编辑-Z CL08-RG210参数描述: 型号:CL08-RG210 反向重复峰值电压VRRM:8000V 反向工作峰值电压VRWM:8000V 正向平均电流IF:0.5A 正向(不重复)浪涌电流IFSM:20A 反向恢复时间trr:80ns 正向…

spring-基于注解管理bean

基于注解管理bean 一、标记与扫描1、引入依赖2、创建spring配置文件3、创建组件4、扫描组件4.1、基本扫描&#xff1a;4.2、指定要排除的组件4.3、仅扫描指定组件 二、基于注解的自动装配 一、标记与扫描 1、引入依赖 <dependencies> <!-- 基于Maven依赖传递性&…

图像特征Vol.1:计算机视觉特征度量|第一弹:【纹理区域特征】

目录 一、前言二、纹理区域度量2.1&#xff1a;边缘特征度量2.2&#xff1a;互相关和自相关特征2.3&#xff1a;频谱方法—傅里叶谱2.4&#xff1a;灰度共生矩阵(GLCM)2.5&#xff1a;Laws纹理特征2.6&#xff1a;局部二值模式&#xff08;LBP&#xff09; 一、前言 &#x1f…

RocketMq源码分析(八)--消息消费流程

文章目录 一、消息消费实现二、消息消费过程1、消息拉取2、消息消费1&#xff09;提交消费请求2&#xff09;消费消息 一、消息消费实现 消息消费有2种实现&#xff0c;分别为&#xff1a;并发消费实现&#xff08;ConsumeMessageConcurrentlyService&#xff09;和顺序消费实现…

vue3-vite-ts-pinia

Vue3 vite Ts pinia 实战 源码 electron 仓库地址&#xff1a;https://gitee.com/szxio/vue3-vite-ts-pinia 视频地址&#xff1a;小满Vue3&#xff08;课程导读&#xff09;_哔哩哔哩_bilibili 课件地址&#xff1a;Vue3_小满zs的博客-CSDN博客 初始化Vue3项目 方式一 …

分布式数据库Apache Doris简易体验

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA及大数据工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&am…

公司电脑禁用U盘的方法

公司电脑禁用U盘的方法 安企神U盘管理系统下载使用 在这个复杂的数据时代&#xff0c;保护公司数据的安全性至关重要。其中&#xff0c;防止未经授权的数据泄露是其中的一个关键环节。U盘作为一种常用的数据传输工具&#xff0c;也成为了潜在的安全风险。因此&#xff0c;公司…

DOM节点学习

喜欢的东西太贵了&#xff0c;我一咬牙&#xff0c;狠下心决定不喜欢了&#xff01; 【文档节点--DOM有哪些节点】 仔细看下面文档的html标签的不同 1.li标签没换行 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"&…

【代码随想录】算法训练计划04

1、24. 两两交换链表中的节点 题目&#xff1a; 给你一个链表&#xff0c;两两交换其中相邻的节点&#xff0c;并返回交换后链表的头节点。你必须在不修改节点内部的值的情况下完成本题&#xff08;即&#xff0c;只能进行节点交换&#xff09;。 思路&#xff1a; 链表这种题…

自己动手搭建一个传奇是什么体验?下面是我搭建的详细教程,大家跟着教程做,不光是学会了技术,平时还可以帮朋友搭建

传奇游戏是一代人的回忆&#xff0c;它曾经风靡一时&#xff0c;让无数玩家沉迷其中。这款游戏以其独特的玩法、丰富的故事背景和深刻的角色刻画&#xff0c;吸引了一大批忠实粉丝。 在传奇游戏中&#xff0c;玩家可以体验到各种不同的职业和角色&#xff0c;每个角色都有自己…

计算机毕业设计 基于SpringBoot高校竞赛管理系统的设计与实现 Javaweb项目 Java实战项目 前后端分离 文档报告 代码讲解 安装调试

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

javascript数据类型

目录 原始数据类型 引用数据类型 类型检测 类型转换 总结 原始数据类型 JavaScript 中有六种原始数据类型&#xff0c;它们是&#xff1a; Undefined&#xff08;未定义&#xff09;: 表示一个未被赋值的变量。Null&#xff08;空值&#xff09;: 表示一个空对象指针。B…

jetson nano刷机更新Jetpack

只是记录个人在使用英伟达jetson Nano的经历,由于头一次尝试,所以特此记录需要的问题和经验。 一,英伟达刷机教程(jetson nano 版本) 本次我是直接刷机到TF卡,然后TF卡作为启动盘进行启动,我看网上有带EMMC版本的,好像可以直接把系统镜像安装到EMMC里面。但是有个问题…

【每日一题】2558. 从数量最多的堆取走礼物-2023.10.28

题目&#xff1a; 2558. 从数量最多的堆取走礼物 给你一个整数数组 gifts &#xff0c;表示各堆礼物的数量。每一秒&#xff0c;你需要执行以下操作&#xff1a; 选择礼物数量最多的那一堆。如果不止一堆都符合礼物数量最多&#xff0c;从中选择任一堆即可。选中的那一堆留下…

ssm164学院学生论坛的设计与实现+vue

项目名称&#xff1a;ssm164学院学生论坛的设计与实现vue 点击这里进入源码目录 声明&#xff1a; 适用范围&#xff1a; 本文档适用于广泛的学术和教育用途&#xff0c;包括但不限于个人学习、毕业设计和课程设计。免责声明&#xff1a; 特此声明&#xff0c;本文仅供参考学…

赴日IT培训 日本IT行业为啥吃香?

确实现在有许多小伙伴尝到了赴日IT的甜头&#xff0c;可是去日本从事IT行业真的很简单吗&#xff1f;为什么日本的IT行业这么缺人呢&#xff1f;那今天小编就跟大家聊一聊日本的IT行业。 咱们先来说说日本的IT行业为什么缺人&#xff1f;其实不只是IT行业&#xff0c;可以说日…

Azure云工作站上做Machine Learning模型开发 - 全流程演示

目录 本文内容先决条件从“笔记本”开始设置用于原型制作的新环境&#xff08;可选&#xff09;创建笔记本开发训练脚本迭代检查结果 关注TechLead&#xff0c;分享AI全维度知识。作者拥有10年互联网服务架构、AI产品研发经验、团队管理经验&#xff0c;同济本复旦硕&#xff0…

53. 寻宝(第七期模拟笔试)(最小生成树练习)

本题链接&#xff1a;卡码网KamaCoder 题目&#xff1a; 样例&#xff1a; 输入 7 11 1 2 1 1 3 1 1 5 2 2 6 1 2 4 2 2 3 2 3 4 1 4 5 1 5 6 2 5 7 1 6 7 1 输出 6 思路&#xff1a; 由题意&#xff0c;这里是需要遍历完全部的顶点&#xff0c;求遍历完全部点的花费最短距离…

java基础 特殊文件

1.Properties属性文件&#xff1a; 1.1使用Properties读取属性文件里的键值对数据&#xff1a; package specialFile;import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.util.Enumeration; import java.util.Propert…