Azure云工作站上做Machine Learning模型开发 - 全流程演示

news2024/11/15 18:37:25

目录

    • 本文内容
    • 先决条件
    • 从“笔记本”开始
    • 设置用于原型制作的新环境(可选)
    • 创建笔记本
    • 开发训练脚本
    • 迭代
    • 检查结果

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

本文内容

了解如何在 Azure 机器学习云工作站上使用笔记本开发训练脚本。 本教程涵盖入门所需的基础知识:

  • 设置和配置云工作站。 云工作站由 Azure 机器学习计算实例提供支持,该实例预配置了环境以支持各种模型开发需求。
  • 使用基于云的开发环境。
  • 使用 MLflow 跟踪模型指标,所有都是在笔记本中完成的。

先决条件

若要使用 Azure 机器学习,你首先需要一个工作区。 如果没有工作区,请完成“创建开始使用所需的资源”以创建工作区并详细了解如何使用它。

从“笔记本”开始

工作区中的“笔记本”部分是开始了解 Azure 机器学习及其功能的好地方。 在这里,可以连接到计算资源、使用终端,以及编辑和运行 Jupyter Notebook 和脚本。

  1. 登录到 Azure 机器学习工作室。
  2. 选择你的工作区(如果它尚未打开)。
  3. 在左侧导航中,选择“笔记本”。
  4. 如果没有计算实例,屏幕中间会显示“创建计算”。 选择“创建计算”并填写表单。 可以使用所有默认值。 (如果已有计算实例,则会在该位置看到“终端”。本教程稍后会使用“终端”。)

file

设置用于原型制作的新环境(可选)

为使脚本运行,需要在配置了代码所需的依赖项和库的环境中工作。 本部分可帮助你创建适合代码的环境。 若要创建笔记本连接到的新 Jupyter 内核,请使用定义依赖项的 YAML 文件。

- 上传文件

上传的文件存储在 Azure 文件共享中,这些文件将装载到每个计算实例并在工作区中共享。

1. 使用右上角的 下载原始文件 按钮,将此 conda 环境文件 [workstation_env.yml](github.com) 下载到计算机。
1. 选择“添加文件”,然后选择“上传文件”,将其上传到工作区。

file

2. 选择“浏览并选择文件”。
3. 选择下载的 workstation_env.yml 文件。
4. 选择“上传”。

你将在“文件”选项卡的用户名文件夹下看到 workstation_env.yml 文件。请选择此文件以预览它,并查看它指定的依赖项。 你将看到如下所示的内容:

name: workstation_env
dependencies:
  - python=3.8
  - pip=21.2.4
  - scikit-learn=0.24.2
  - scipy=1.7.1
  - pandas>=1.1,<1.2
  - pip:
    - mlflow==2.4.1 
    - azureml-mlflow==1.51.0
    - psutil>=5.8,<5.9
    - ipykernel~=6.0
    - matplotlib

- 创建内核

现在,使用 Azure 机器学习终端基于 workstation_env.yml 文件创建新的 Jupyter 内核。

1. 选择“终端”以打开终端窗口。 还可以从左侧命令栏打开终端:

file

2. 如果计算实例已停止,请选择“启动计算”,并等待它运行。

file

3. 计算运行后,终端中会显示一条欢迎消息,可以开始键入命令。
4. 查看当前的 conda 环境。 活动环境标有 *。

    conda env list

5. 如果为本教程创建了子文件夹,请立即运行 `cd` 转到该文件夹。
6. 根据提供的 conda 文件创建环境。 构建此环境需要几分钟时间。

    conda env create -f workstation_env.yml

7. 激活新环境。

    conda activate workstation_env

8. 验证正确的环境是否处于活动状态,再次查找标有 * 的环境。

    conda env list

9. 基于活动环境创建新的 Jupyter 内核。

    python -m ipykernel install --user --name workstation_env --display-name "Tutorial Workstation Env" 

10. 关闭终端窗口。

创建笔记本

  1. 选择“添加文件”,然后选择“创建新文件”。
    file

  2. 将新笔记本命名为 develop-tutorial.ipynb(或输入首选名称)。

  3. 如果计算实例已停止,请选择“启动计算”,并等待它运行。
    file

  4. 你将在右上角看到笔记本已连接到默认内核。 如果创建了内核,请切换到使用 Tutorial Workstation Env 内核。

开发训练脚本

在本部分中,你将使用 UCI 数据集中准备好的测试和训练数据集开发一个 Python 训练脚本,用于预测信用卡默认付款。

此代码使用 sklearn 进行训练,使用 MLflow 来记录指标。

  1. 从可导入将在训练脚本中使用的包和库的代码开始。

    import os
    import argparse
    import pandas as pd
    import mlflow
    import mlflow.sklearn
    from sklearn.ensemble import GradientBoostingClassifier
    from sklearn.metrics import classification_report
    from sklearn.model_selection import train_test_split
    
  2. 接下来,加载并处理此试验的数据。 在本教程中,将从 Internet 上的一个文件读取数据。

    # load the data
    credit_df = pd.read_csv(
        "https://azuremlexamples.blob.core.windows.net/datasets/credit_card/default_of_credit_card_clients.csv",
        header=1,
        index_col=0,
    )
    
    train_df, test_df = train_test_split(
        credit_df,
        test_size=0.25,
    )
    
  3. 准备好数据进行训练:

    # Extracting the label column
    y_train = train_df.pop("default payment next month")
    
    # convert the dataframe values to array
    X_train = train_df.values
    
    # Extracting the label column
    y_test = test_df.pop("default payment next month")
    
    # convert the dataframe values to array
    X_test = test_df.values
    
  4. 添加代码以使用 MLflow 开始自动记录,以便可以跟踪指标和结果。 MLflow 具有模型开发的迭代性质,可帮助你记录模型参数和结果。 请回顾这些运行,比较并了解模型的性能。 这些日志还为你准备好从 Azure 机器学习中工作流的开发阶段转到训练阶段提供上下文。

    # set name for logging
    mlflow.set_experiment("Develop on cloud tutorial")
    # enable autologging with MLflow
    mlflow.sklearn.autolog()
    
  5. 训练模型。

    # Train Gradient Boosting Classifier
    print(f"Training with data of shape {X_train.shape}")
    
    mlflow.start_run()
    clf = GradientBoostingClassifier(n_estimators=100, learning_rate=0.1)
    clf.fit(X_train, y_train)
    
    y_pred = clf.predict(X_test)
    
    print(classification_report(y_test, y_pred))
    # Stop logging for this model
    mlflow.end_run()
    

注意

可以忽略 mlflow 警告。 你仍将获得需要跟踪的所有结果。

迭代

现在你已经有了模型结果,可能需要更改某些内容,然后重试。 例如,请尝试其他分类器技术:

# Train  AdaBoost Classifier
from sklearn.ensemble import AdaBoostClassifier

print(f"Training with data of shape {X_train.shape}")

mlflow.start_run()
ada = AdaBoostClassifier()

ada.fit(X_train, y_train)

y_pred = ada.predict(X_test)

print(classification_report(y_test, y_pred))
# Stop logging for this model
mlflow.end_run()

注意
可以忽略 mlflow 警告。 你仍将获得需要跟踪的所有结果。

检查结果

现在,你已尝试两个不同的模型,请使用 MLflow 跟踪的结果来确定哪个模型更好。 可以引用准确性等指标,或者引用对方案最重要的其他指标。 可以通过查看 MLflow 创建的作业来更详细地了解这些结果。

  1. 在左侧导航栏中,选择“作业”。
    file

  2. 选择“在云上开发教程”的链接。

  3. 显示了两个不同的作业,每个已尝试的模型对应一个。 这些名称是自动生成的。 将鼠标悬停在某个名称上时,如果要重命名该名称,请使用名称旁边的铅笔工具。

  4. 选择第一个作业的链接。 名称显示在顶部。 还可以在此处使用铅笔工具重命名它。

  5. 该页显示作业的详细信息,例如属性、输出、标记和参数。 在“标记”下,你将看到 estimator_name,其描述模型的类型。

  6. 选择“指标”选项卡以查看 MLflow 记录的指标。 (预期结果会有所不同,因为训练集不同。)
    file

  7. 选择“图像”选项卡以查看 MLflow 生成的图像。
    file

  8. 返回并查看其他模型的指标和图像。

关注TechLead,分享AI全维度知识。作者拥有10+年互联网服务架构、AI产品研发经验、团队管理经验,同济本复旦硕,复旦机器人智能实验室成员,阿里云认证的资深架构师,项目管理专业人士,上亿营收AI产品研发负责人。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1144230.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

53. 寻宝(第七期模拟笔试)(最小生成树练习)

本题链接&#xff1a;卡码网KamaCoder 题目&#xff1a; 样例&#xff1a; 输入 7 11 1 2 1 1 3 1 1 5 2 2 6 1 2 4 2 2 3 2 3 4 1 4 5 1 5 6 2 5 7 1 6 7 1 输出 6 思路&#xff1a; 由题意&#xff0c;这里是需要遍历完全部的顶点&#xff0c;求遍历完全部点的花费最短距离…

java基础 特殊文件

1.Properties属性文件&#xff1a; 1.1使用Properties读取属性文件里的键值对数据&#xff1a; package specialFile;import java.io.FileNotFoundException; import java.io.FileReader; import java.io.IOException; import java.util.Enumeration; import java.util.Propert…

【C++】C++入门(中)--引用

目录 一 引用概念 二 引用特性 三 常引用 四 引用使用场景 1 做参数 2. 做返回值 1 例一 2 例二 3 例三 4 例四 五 传值, 传引用效率比较 六 值和引用的作为返回值类型的性能比较 七 引用和指针的区别 一 引用概念 引用不是新定义一个变量&#xff0c;而是给已存…

视频智能视觉分析真的遥不可及吗?有没有那种下载就能用的视频分析服务?

我一直有一个感觉&#xff0c;就是市面上很难找到那么一个带视频算法的软件&#xff0c;能让我们很直观地看到视频分析的效果&#xff0c;大部分都要内置在某种算力硬件上&#xff0c;或者对GPU要求比较严格&#xff0c;很难做到像以前我们做的视频直播软件那样&#xff0c;下载…

Springboot+vue地方废品回收机构管理系统(有报告)。Javaee项目,springboot vue前后端分离项目。

演示视频&#xff1a; Springbootvue地方废品回收机构管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&…

牛客网刷题-(7)

&#x1f308;write in front&#x1f308; &#x1f9f8;大家好&#xff0c;我是Aileen&#x1f9f8;.希望你看完之后&#xff0c;能对你有所帮助&#xff0c;不足请指正&#xff01;共同学习交流. &#x1f194;本文由Aileen_0v0&#x1f9f8; 原创 CSDN首发&#x1f412; 如…

RK3568平台 sys虚拟文件系统添加节点

一.常见的linux文件系统 1. EXT2: EXT2是最早的Linux文件系统之一&#xff0c;它被广泛应用于Linux操作系统中。它支持大小为16TB的分区和最大文件大小为2TB。由于其简单性和高可靠性&#xff0c;在很长一段时间内仍被许多用户所选择。 2. EXT3: 2001年&#xff0c;Linux社区…

【100天精通Python】Day72:Python可视化_一文掌握Seaborn库的使用《二》_分类数据可视化,线性模型和参数拟合的可视化,示例+代码

目录 1. 分类数据的可视化 1.1 类别散点图&#xff08;Categorical Scatter Plot&#xff09; 1.2 类别分布图&#xff08;Categorical Distribution Plot&#xff09; 1.3 类别估计图&#xff08;Categorical Estimate Plot&#xff09; 1.4 类别单变量图&#xff08;Cat…

《C和指针》笔记35:结构体

本文整理一下结构体的相关知识&#xff0c;记录是为了更好地加深理解。 1. 结构体声明 下面两个声明语句&#xff1a; struct {int a;char b;float c; } x;struct {int a;char b;float c; } y[20], *z;这两个声明被编译器当作两种截然不同的类型&#xff0c;即使它们的成员列…

数字电路与逻辑设计 之 组合电路的设计(多输出电路,全加器,乘法器)

一些例子 多输出的电路设计 全加器 我们尝试不去弄到最简 乘法器 要分析有几个输入&#xff0c;几个输出

代码签名证书续费

代码签名证书的有效周期是1-3年&#xff0c;这种情况下证书到期了就要重新申请办理&#xff0c;最开始同样的申请验证步骤还要再走一遍&#xff0c;尤其是Ukey还是要CA机构重新颁发&#xff0c;还是要等待快递配送。OV代码签名证书、EV代码签名证书目前行业内统一采取Ukey存储&…

链动2+1全新9.0版本 无限链动收益

一个平台能否长期存活取决于它是否有一个支撑其持续发展的商业模式。蜂群精选深谙用户心理&#xff0c;对链动21模式进行改造&#xff0c;创新出一种同时具备裂变能力和高效吸引用户留存的新玩法。 链动21模式在整个架构上都是完整的&#xff0c;可以说是一个非常出色的营销模式…

【JAVA】我们该如何规避代码中可能出现的错误?(三)

个人主页&#xff1a;【&#x1f60a;个人主页】 系列专栏&#xff1a;【❤️初识JAVA】 文章目录 前言throws/throw 关键字throw 关键字throws 关键字 finally关键字 前言 异常是程序中的一些错误&#xff0c;但并不是所有的错误都是异常&#xff0c;并且错误00有时候是可以避…

统计学习方法 决策树

文章目录 统计学习方法 决策树决策树模型与学习特征选择决策树的生成ID3 算法C4.5 的生成算法 决策树的剪枝CART 算法CART 回归树的生成CART 分类树的生成CART 剪枝 统计学习方法 决策树 阅读李航的《统计学习方法》时&#xff0c;关于决策树的笔记。 决策树模型与学习 决策…

C++学习笔记之四(标准库、标准模板库、vector类)

C 1、C标准库2、C标准模板库2.1、vector2.1.1、vector与array2.1.2、vector与函数对象2.1.3、vector与迭代器2.1.4、vector与算法 1、C标准库 C C C标准库指的是标准程序库( S t a n d a r d Standard Standard L i b a r a y Libaray Libaray)&#xff0c;它定义了十个大类…

编码,解码

一.标准ASCll字符集 标准ASCll 字符集使用一个字节存储一个字符&#xff0c;首尾是0 二.GBK字符集 GBK中一个中文字符编码成两个字节的形式存储&#xff0c;一个英文字母编码成一个字节的形式存储 对于 汉字中夹英文的&#xff0c;GBK规定&#xff1a;汉字的第一个字节的第一位…

MySQL安装多个实例——批处理脚本一键配置MySQL服务

1.下载mysql的免安装压缩包 官网&#xff1a;https://downloads.mysql.com/archives/community/ 2.解压并新增批处理脚本 echo off chcp 65001 setlocal enabledelayedexpansionecho MySQL版本为8.0.34REM 使用set /p命令获取用户输入的端口号 set /p "port请输入端口号…

C++标准模板(STL)- 类型支持 (类型特性,is_pointer,is_lvalue_reference,is_rvalue_reference)

类型特性 类型特性定义一个编译时基于模板的结构&#xff0c;以查询或修改类型的属性。 试图特化定义于 <type_traits> 头文件的模板导致未定义行为&#xff0c;除了 std::common_type 可依照其所描述特化。 定义于<type_traits>头文件的模板可以用不完整类型实…

【git】git使用教程

1、版本管理工具 如果有一个软件能记录我们对文档的所有修改&#xff0c;所有版本&#xff0c;这类软件我们一般叫做版本控制工具。 特性“ 能够记录历史版本&#xff0c;回退历史版本团队开发&#xff0c;方便代码合并 2、版本管理工具介绍 svn、git svn是集中式版本控制…

mac版本 Adobe总是弹窗提示验证问题如何解决

来自&#xff1a; mac软件下载macsc站 mac电脑使用过程中总是弹出Adobe 的弹窗提示&#xff0c;尤其是打开Adobe的软件&#xff0c;更是频繁的弹出提示&#xff1a; Your Adobe app is not genuine. Adobe reserves the right to disable this software after a 0 grace period…