分布式日志和链路追踪

news2025/1/24 6:35:12

分布式日志

实现思路

分布式日志框架服务的实现思路基本是一致的,如下:

  • 日志收集器:微服务中引入日志客户端,将记录的日志发送到日志服务端的收集器,然后以某种方式存储
  • 数据存储:一般使用ElasticSearch分布式存储,把收集器收集到的日志格式化,然后存储到分布式存储中
  • web服务:利用ElasticSearch的统计搜索功能,实现日志查询和报表输出

比较知名的分布式日志服务包括:

  • ELK:elasticsearch、Logstash、Kibana
  • GrayLog

ELK存在的问题

  1. 不能处理多行日志,比如Mysql慢查询,Tomcat/Jetty应用的Java异常打印
  2. 不能保留原始日志,只能把原始日志分字段保存,这样搜索日志结果是一堆Json格式文本,无法阅读。
  3. 不符合正则表达式匹配的日志行,被全部丢弃。

 Graylog的优点

  1. 一体化方案,安装方便,不像ELK有3个独立系统间的集成问题。
  2. 采集原始日志,并可以事后再添加字段,比如http_status_code,response_time等等。
  3. 自己开发采集日志的脚本,并用curl/nc发送到Graylog Server,发送格式是自定义的GELF,Flunted和Logstash都有相应的输出GELF消息的插件。自己开发带来很大的自由度。实际上只需要用inotifywait监控日志的modify事件,并把日志的新增行用curl/netcat发送到Graylog Server就可。
  4. 搜索结果高亮显示,就像google一样。
  5. 搜索语法简单,比如: source:mongo AND reponse_time_ms:>5000,避免直接输入elasticsearch搜索json语法
  6. 搜索条件可以导出为elasticsearch的搜索json文本,方便直接开发调用elasticsearch rest api的搜索脚本。

GrayLog的使用

GrayLog的流程框架图

流程如下:

  • 微服务中的GrayLog客户端发送日志到GrayLog服务端
  • GrayLog把日志信息格式化,存储到Elasticsearch
  • 客户端通过浏览器访问GrayLog,GrayLog访问Elasticsearch

这里MongoDB是用来存储GrayLog的配置信息的,这样搭建集群时,GrayLog的各节点可以共享配置。

GrayLog的安装

此时我们需要在docker中安装Mongodb, elasticSearch,GrayLog。

#部署Elasticsearch
docker run -d \
    --name elasticsearch \
    -e "ES_JAVA_OPTS=-Xms512m -Xmx512m" \
    -e "discovery.type=single-node" \
    -v es-data:/usr/share/elasticsearch/data \
    -v es-plugins:/usr/share/elasticsearch/plugins \
    --privileged \
    -p 9200:9200 \
    -p 9300:9300 \
elasticsearch:7.17.5

#部署MongoDB(
docker run -d \
--name mongodb \
-p 27017:27017 \
--restart=always \
-v mongodb:/data/db \
-e MONGO_INITDB_ROOT_USERNAME=sl \
-e MONGO_INITDB_ROOT_PASSWORD=123321 \
mongo:4.4

#部署 ,分别设置es和mongo的地址
docker run \
--name graylog \
-p 9000:9000 \
-p 12201:12201/udp \
-e GRAYLOG_HTTP_EXTERNAL_URI=http://192.168.150.101:9000/ \
-e GRAYLOG_ELASTICSEARCH_HOSTS=http://192.168.150.101:9200/ \
-e GRAYLOG_ROOT_TIMEZONE="Asia/Shanghai"  \
-e GRAYLOG_WEB_ENDPOINT_URI="http://192.168.150.101:9000/:9000/api" \
-e GRAYLOG_PASSWORD_SECRET="somepasswordpepper" \
-e GRAYLOG_ROOT_PASSWORD_SHA2=8c6976e5b5410415bde908bd4dee15dfb167a9c873fc4bb8a81f6f2ab448a918 \
-e GRAYLOG_MONGODB_URI=mongodb://sl:123321@192.168.150.101:27017/admin \
-d \
graylog/graylog:4.3

命令解读:

  • 端口信息:
    • -p 9000:9000:GrayLog的http服务端口,9000
    • -p 12201:12201/udp:GrayLog的GELF UDP协议端口,用于接收从微服务发来的日志信息
  • 环境变量
    • -e GRAYLOG_HTTP_EXTERNAL_URI:对外开放的ip和端口信息,这里用9000端口
    • -e GRAYLOG_ELASTICSEARCH_HOSTS:GrayLog依赖于ES,这里指定ES的地址
    • -e GRAYLOG_WEB_ENDPOINT_URI:对外开放的API地址
    • -e GRAYLOG_PASSWORD_SECRET:密码加密的秘钥
    • -e GRAYLOG_ROOT_PASSWORD_SHA2:密码加密后的密文。明文是admin,账户也是admin
    • -e GRAYLOG_ROOT_TIMEZONE="Asia/Shanghai":GrayLog容器内时区
    • -e GRAYLOG_MONGODB_URI:指定MongoDB的链接信息
  • graylog/graylog:4.3:使用的镜像名称,版本为4.3

进行测试

访问对应的9000端口。

 集成微服务进行测试

导入依赖

<dependency>
    <groupId>biz.paluch.logging</groupId>
    <artifactId>logstash-gelf</artifactId>
    <version>1.15.0</version>
</dependency>

修改Logback.xml

<?xml version="1.0" encoding="UTF-8"?>
<!--scan: 当此属性设置为true时,配置文件如果发生改变,将会被重新加载,默认值为true。-->
<!--scanPeriod: 设置监测配置文件是否有修改的时间间隔,如果没有给出时间单位,默认单位是毫秒。当scan为true时,此属性生效。默认的时间间隔为1分钟。-->
<!--debug: 当此属性设置为true时,将打印出logback内部日志信息,实时查看logback运行状态。默认值为false。-->
<configuration debug="false" scan="false" scanPeriod="60 seconds">
    <springProperty scope="context" name="appName" source="spring.application.name"/>
    <!--文件名-->
    <property name="logback.appname" value="${appName}"/>
    <!--文件位置-->
    <property name="logback.logdir" value="/data/logs"/>

    <!-- 定义控制台输出 -->
    <appender name="stdout" class="ch.qos.logback.core.ConsoleAppender">
        <layout class="ch.qos.logback.classic.PatternLayout">
            <pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} - [%thread] - %-5level - %logger{50} - %msg%n</pattern>
        </layout>
    </appender>


    <appender name="FILE" class="ch.qos.logback.core.rolling.RollingFileAppender">
        <filter class="ch.qos.logback.classic.filter.ThresholdFilter">
            <level>DEBUG</level>
        </filter>
        <File>${logback.logdir}/${logback.appname}/${logback.appname}.log</File>
        <rollingPolicy class="ch.qos.logback.core.rolling.TimeBasedRollingPolicy">
            <FileNamePattern>${logback.logdir}/${logback.appname}/${logback.appname}.%d{yyyy-MM-dd}.log.zip</FileNamePattern>
            <maxHistory>90</maxHistory>
        </rollingPolicy>
        <encoder>
            <charset>UTF-8</charset>
            <pattern>%d [%thread] %-5level %logger{36} %line - %msg%n</pattern>
        </encoder>
    </appender>

    <appender name="GELF" class="biz.paluch.logging.gelf.logback.GelfLogbackAppender">
        <!--GrayLog服务地址-->
        <host>udp:192.168.150.101</host>
        <!--GrayLog服务端口-->
        <port>12201</port>
        <version>1.1</version>
        <!--当前服务名称-->
        <facility>${appName}</facility>
        <extractStackTrace>true</extractStackTrace>
        <filterStackTrace>true</filterStackTrace>
        <mdcProfiling>true</mdcProfiling>
        <timestampPattern>yyyy-MM-dd HH:mm:ss,SSS</timestampPattern>
        <maximumMessageSize>8192</maximumMessageSize>
    </appender>

    <!--evel:用来设置打印级别,大小写无关:TRACE, DEBUG, INFO, WARN, ERROR, ALL 和 OFF,-->
    <!--不能设置为INHERITED或者同义词NULL。默认是DEBUG。-->
    <root level="INFO">
        <appender-ref ref="stdout"/>
        <appender-ref ref="GELF"/>
    </root>
</configuration>

这样就实现了微服务的分布式日志。

调用work服务的查询方法,日志就会出现在控制面板上。

日志回收策略

点击Default index set的Edit进行设置日志的回收策略。

日志的回策略有三种。

分别是:

  • Index Message Count:按照日志数量统计,默认超过20000000条日志开始清理
  • Index Size:按照日志大小统计,默认超过1GB开始清理
  • Index Time:按照日志日期清理,默认日志存储1天

搜索语法
搜索语法的格式

#不指定字段,默认从message字段查询
输入:undo

#输入两个关键字,关系为or
undo 统计

#加引号是需要完整匹配
"undo 统计"

#指定字段查询,level表示日志级别,ERROR(3)、WARNING(4)、NOTICE(5)、INFO(6)、DEBUG(7)
level: 6

#或条件
level:(6 OR 7)

自定义展示字段

可以在allMessage中显示字段。

 这里添加了level字段。

日志统计仪表

创建仪表

点击Create new dashboard,创建一个新的仪表。

 在该仪表中我们可以进行DIY。

可以DIY成这种效果。

分布式日志面试题

问: 在服务中你们通常会进入哪些信息呢?
答: 会记录: 服务的名称,日志的级别,日志的详细信息,时间,对应的类,调用的方法。

问: 那会在什么时候进行记录日志?

答: 在有异常信息调用重要方法时的参数传入时会记录日志。

链路追踪

APM  

什么是APM?

随着微服务架构的流行,一次请求往往需要涉及到多个服务,因此服务性能监控和排查就变得更复杂

  • 不同的服务可能由不同的团队开发、甚至可能使用不同的编程语言来实现
  • 服务有可能布在了几千台服务器,横跨多个不同的数据中心

因此,就需要一些可以帮助理解系统行为、用于分析性能问题的工具,以便发生故障的时候,能够快速定位和解决问题,这就是APM系统,全称是(Application Performance Monitor,当然也有叫 Application Performance Management tools)

APM最早是谷歌公开的论文提到的 Google Dapper。Dapper是Google生产环境下的分布式跟踪系统,自从Dapper发展成为一流的监控系统之后,给google的开发者和运维团队帮了大忙,所以谷歌公开论文分享了Dapper。

原理

  1. 包括:前端(A),两个中间层(B和C),以及两个后端(D和E)
  2. 当用户发起一个请求时,首先到达前端A服务,然后分别对B服务和C服务进行RPC调用;
  3. B服务处理完给A做出响应,但是C服务还需要和后端的D服务和E服务交互之后再返还给A服务,最后由A服务来响应用户的请求;

 

如何才能实现跟踪呢?需要明白下面几个概念:

  • 探针:负责在客户端程序运行时收集服务调用链路信息,发送给收集器
  • 收集器:负责将数据格式化,保存到存储器
  • 存储器:保存数据
  • UI界面:统计并展示

探针会在链路追踪时记录每次调用的信息,Span是基本单元,一次链路调用(可以是RPC,DB等没有特定的限制)创建一个span,通过一个64位ID标识它;同时附加(Annotation)作为payload负载信息,用于记录性能等数据。

span的基本结构

type Span struct {
    TraceID    int64 // 用于标示一次完整的请求id
    Name       string //名称
    ID         int64 // 当前这次调用span_id
    ParentID   int64 // 上层服务的调用span_id  最上层服务parent_id为null,代表根服务root
    Annotation []Annotation // 记录性能等数据
    Debug      bool
}

Skywalking的使用 

主要的特征:

  • 多语言探针或类库
    • Java自动探针,追踪和监控程序时,不需要修改源码。
    • 社区提供的其他多语言探针
      • .NET Core
      • Node.js
  • 多种后端存储: ElasticSearch, H2
  • 支持OpenTracing
    • Java自动探针支持和OpenTracing API协同工作
  • 轻量级、完善功能的后端聚合和分析
  • 现代化Web UI
  • 日志集成
  • 应用、实例和服务的告警

部署安装

#在此之前需要部署es

#oap服务,需要指定Elasticsearch以及链接信息
docker run -d \
-e TZ=Asia/Shanghai \
--name oap \
-p 12800:12800 \
-p 11800:11800 \
-e SW_STORAGE=elasticsearch \
-e SW_STORAGE_ES_CLUSTER_NODES=192.168.150.101:9200 \
apache/skywalking-oap-server:9.1.0


#部署ui,需要指定oap服务
docker run -d \
--name oap-ui \
-p 48080:8080 \
-e TZ=Asia/Shanghai \
-e SW_OAP_ADDRESS=http://192.168.150.101:12800 \
apache/skywalking-ui:9.1.0

访问对应的端口48080。

微服务探针

我们需要在对应的微服务中添加探针。

需要准备Keywalking-gent文件(在资源中获取)

打开Idea在对应的微服务上添加VM的配置

#在探针处添加skywalking-agent.jar在电脑的对应位置
#设置服务的名称
#设置skywalking的面板地址
-javaagent:D:\skywalking-agent\skywalking-agent.jar
-Dskywalking.agent.service_name=ms::sl-express-ms-work
-Dskywalking.collector.backend_service=192.168.150.101:11800

进行配置,效果为下:

访问接口进行测试

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1138631.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

简化路径(C++解法)

题目 给你一个字符串 path &#xff0c;表示指向某一文件或目录的 Unix 风格 绝对路径 &#xff08;以 / 开头&#xff09;&#xff0c;请你将其转化为更加简洁的规范路径。 在 Unix 风格的文件系统中&#xff0c;一个点&#xff08;.&#xff09;表示当前目录本身&#xff1…

【高阶数据结构】并查集和图

目录 1.数据结构--并查集 2.数据结构--图 1.图的基础概念 2.图的简单实现 2.1.邻接矩阵的图实现 2.2.邻接表的图实现 2.3.图的DFS和BFS 2.4.最小生成树 2.4.1.Kruskal(克鲁斯卡尔算法) 2.4.2.Prim&#xff08;普里姆算法&#xff09; 2.5.最短路径 2.5.1.Dijkstra(…

非遗主题网站的设计与实现基于PHP实现

包括源码参考论文 下载地址: https://juzhendongli.store/commodity/details/18

k8s-----26、细粒度权限管理 RBAC

0、导读 每一个用户对API资源进行操作都需要通经过以下三个步骤: 第一步:对客户端访问进行认证操作,确认是否具有访问k8s权限(也就是通过serviceaccount) token(共享秘钥) SSL(双向SSL认证) …通过任何一个认证即表示认证通过,进入下一步第二步:授权检查,确认是否对资源…

openpnp - SlotSchultzFeeder source code bugfix

文章目录 openpnp - SlotSchultzFeeder source code bugfix概述笔记openpnp源码调试环境排查思路开git分支查到的问题 - 1查到的问题 - 2查到的问题 - 3针对以上问题进行的逻辑修正D:\my_openpnp\openpnp_github\src\main\java\org\openpnp\machine\reference\driver\wizards\G…

Redis快速上手篇(六)主从复制

主从复制 主机数据更新后根据配置和策略&#xff0c; 自动同步到备机的master/slaver机制&#xff0c;Master以写为主&#xff0c;Slave以读为主 读写分离&#xff0c;性能扩展&#xff08;主 写 从 读&#xff09; 容灾快速恢复 一主二仆 拷贝多个redis.conf文件include(写绝…

动态规划太难了?是你没有找对方法,四题带你搞懂动态规划!

&#x1f4af; 博客内容&#xff1a;动态规划刷题 &#x1f600; 作  者&#xff1a;陈大大陈 &#x1f680; 个人简介&#xff1a;一个正在努力学技术的准前端&#xff0c;专注基础和实战分享 &#xff0c;欢迎私信&#xff01; &#x1f496; 欢迎大家&#xff1a;这里是CS…

【RV1106/RV1103】RV1103增加RTL8723BS

文章目录 Kernel 部分支持配置 menuconfigWiFi 功能支持Bluetooth 功能支持 原SDK的Busybox配置BT 部分文件系统部分蓝牙测试dbus 安装测试遇到的问题让hci0出来 使用hcitool来操作 Kernel 部分支持 配置 menuconfig WiFi 功能支持 Bluetooth 功能支持 正基和海华的模块都使用…

pip 更换源

方案1 在C盘用户名录下新建pip文件夹&#xff0c;里面包含pip.ini文件 方案2 在C盘用户名目录的AppData的Roaming下新建pip文件夹&#xff0c;里面包含pip.ini文件。 内容为 [global] index-url https://pypi.tuna.tsinghua.edu.cn/simple

题目 1056: 二级C语言-温度转换(python详解)——练气四层初期

✨博主&#xff1a;命运之光 &#x1f984;专栏&#xff1a;算法修炼之练气篇&#xff08;C\C版&#xff09; &#x1f353;专栏&#xff1a;算法修炼之筑基篇&#xff08;C\C版&#xff09; &#x1f352;专栏&#xff1a;算法修炼之练气篇&#xff08;Python版&#xff09; ✨…

CVE-2022-22965 Spring Framework远程命令执行

0x01 影响版本 Spring Framework < 5.3.18 Spring Framework < 5.2.20 JDK>9 0x02 复现环境 vulhub/spring/cve-2022-22965 0x03 漏洞复现 首先docker-compose up -d开启靶场 输入payload <%if("j".equals(request.getParameter("pwd")…

Transformer在计算机视觉领域的研究综述

论文地址&#xff1a;https://kns.cnki.net/kcms/detail/11.2127.TP.20221009.1217.003.html 目录 摘 要 1. Transformer 基本结构 1.1 位置编码 (1) 绝对位置编码 (2) 相对位置编码 1.2 自注意力机制 (1) 多头注意力 (2) 局部注意力 (3) 稀疏注意力机制 1.3 前馈神…

通信仿真软件SystemView安装教程(超详细)

介绍 system view是一种电子仿真工具。它是一个信号级的系统仿真软件&#xff0c;主要用于电路与通信系统的设计和仿真&#xff0c;是一个强有力的动态系统分析工具&#xff0c;能满足从数字信号处理&#xff0c;滤波器设计&#xff0c;直到复杂的通信系统等不同层次的设计&am…

SQL注入类型(详细讲解)

SQL注入方法(函数原理讲解) 前言 在进行SQL注入测试的时候&#xff0c;确实很重要要知道目标SQL语句是什么类型&#xff0c;因为不同类型的SQL语句对注入的有效载荷&#xff08;payload&#xff09;有不同的语法要求。下面列举了几个原因&#xff1a; 1. 语法闭合 你提到了…

“可编程网络”的基础概念介绍

什么是可编程网络&#xff1f; 可编程网络是指网络设备的行为和流量控制由独立于网络硬件运行的软件处理的网络。可编程网络的基本性质是将底层物理硬件与设备的控制软件分开。 网络可编程的历史 当可编程网络的概念首次出现时&#xff0c;它是计算机网络发展史上革命性的一…

Specializing Smaller Language Models towards Multi-Step Reasoning论文精读

0 Abstract 普遍认为&#xff0c;LLM涌现出来的few-shot learning能力是超大参数模型独有的&#xff08;>100B&#xff09;【emergent abilities】&#xff1b;作者认为&#xff0c;小模型&#xff08;<10B&#xff09;可以将这些能力从大模型&#xff08;>100B&…

【HTML/CSS学习】margin和padding的区别

1. margin margin&#xff08;外边距&#xff09;属性定义元素周围的空间。 margin主要在元素的外部创建空白区域&#xff0c;用于分隔元素与其相邻元素之间的距离。 用处&#xff1a;可以用于调整两个元素之间的间隔。 2. padding padding&#xff08;填充&#xff09;定义…

dcrcms 文件上传漏洞

dcrcms 文件上传漏洞 启动环境 启动靶场得到ip和映射端口 测试漏洞 输入http://10.9.47.6:14153/dcr进入后台 账号密码为admin:123456 寻找文件上传漏洞 看到添加新闻里有文件上传我们尝试进行上传 写一个php文件里面放入一句话木马 <?php eval($_REQUEST[666]); ?…

C++前缀和算法的应用:用地毯覆盖后的最少白色砖块 原理源码测试用例

本文涉及的基础知识点 C算法&#xff1a;前缀和、前缀乘积、前缀异或的原理、源码及测试用例 包括课程视频 题目 给你一个下标从 0 开始的 二进制 字符串 floor &#xff0c;它表示地板上砖块的颜色。 floor[i] ‘0’ 表示地板上第 i 块砖块的颜色是 黑色 。 floor[i] ‘1…

警务可视化 玫瑰图和柱折混合图

什么时候用&#xff0c;什么时候导入echarts 完整代码&#xff1a; 搭建页面结构的代码 html <template><h2>智慧公安数字服务系统</h2><div><div class"container1"> </div> <div class"container2"></di…