sqoop和flume简单安装配置使用

news2024/12/26 2:21:28

1. Sqoop

1.1 Sqoop介绍

  • Sqoop 是一个在结构化数据和 Hadoop 之间进行批量数据迁移的工具

    • 结构化数据可以是MySQL、Oracle等关系型数据库

      • 把关系型数据库的数据导入到 Hadoop 与其相关的系统

      • 把数据从 Hadoop 系统里抽取并导出到关系型数据库里

    • 底层用 MapReduce 实现数据

      • 命令执行过程中,map 0% ,Reduce0%----》map 100% ,Reduce 100%
      • 01-MR执行过程
idnameage
1zhangsan18

02-sqoop和数据转移之间关系

1.2 Sqoop安装

  • 下载、上传、解压、重命名和授权

    • https://mirrors.tuna.tsinghua.edu.cn/apache/sqoop/1.3.7/sqoop-1.3.7.bin__hadoop-2.6.0.tar.gz
  • 上传到 /home/hadoop 目录,直接在xshell拖拽进入家目录即可

  • #Sqoop的安装
    sudo tar -xvf sqoop-1.3.7.bin__hadoop-2.6.0.tar.gz -C /usr/local
    #改名
    sudo mv /usr/local/sqoop-1.3.7.bin__hadoop-2.6.0/ /usr/local/sqoop
    #授权
    sudo chown -R hadoop /usr/local/sqoop
    

1.3 Sqoop配置和验证

1.3.1 sqoop配置

#1、修改配置文件
mv /usr/local/sqoop/conf/sqoop-env-template.sh /usr/local/sqoop/conf/sqoop-env.sh

# 进入配置目录,把各个组件的路径写入
cd /usr/local/sqoop/conf/
sudo vim sqoop-env.sh 

Snipaste_2023-10-25_14-01-52

#2、上传 jar 文件
cd /usr/local/sqoop/lib/
#2.1 上传 MySQL 的驱动文件,拖拽上传进xshell

#2.2拷贝 hive 的驱动文件
cp /usr/local/hive/lib/hive-common-2.3.7.jar /usr/local/sqoop/lib/

#3、配置环境变量
#编辑环境变量
vim /home/hadoop/.bashrc

#在环境变量最后添加以下内容
export SQOOP_HOME=/usr/local/sqoop
export PATH=$PATH:$SQOOP_HOME/bin

#刷新环境变量
source /home/hadoop/.bashrc

#验证是否安装成功
sqoop version

1.3.2 在MySQL中创建sqoop用户

#查看管理员账户和密码
sudo cat /etc/mysql/debian.cnf 

#用查看的账户和密码登录
mysql -u debian-sys-maint -p

#登录成功再执行下面命令,可参考下图
#创建sqoop用户,
create user 'sqoop'@'%' identified by '123456';
#并对用户授权
grant all privileges on sqoop.* to 'sqoop'@'%';
#刷新使授权生效
flush privileges;

#退出
exit;

执行MySQL示例:

Snipaste_2023-10-25_14-05-20

1.3.3 验证sqoop是否成功运行及常见错误:

  • #测试能否成功连接数据库
#测试能否成功连接数据库
sqoop list-databases --connect jdbc:mysql://master:3306/?useSSL=false --username sqoop --password 123456
  1. 使用命令报错时:

    #测试能否成功连接数据库
    sqoop list-databases --connect jdbc:mysql://master:3306/?useSSL=false --username sqoop --password 123456
    
  2. **报错信息如下:**ERROR manager.CatalogQueryManager: Failed to list databases

com.mysql.jdbc.exceptions.jdbc4.CommunicationsException: Communications link failure

完整信息在下面:

  • Warning: /usr/local/sqoop/../hcatalog does not exist! HCatalog jobs will fail.
    Please set $HCAT_HOME to the root of your HCatalog installation.
    Warning: /usr/local/sqoop/../accumulo does not exist! Accumulo imports will fail.
    Please set $ACCUMULO_HOME to the root of your Accumulo installation.
    。。。
    	at org.apache.sqoop.Sqoop.runTool(Sqoop.java:243)
    	at org.apache.sqoop.Sqoop.main(Sqoop.java:252)
    Caused by: java.net.ConnectException: Connection refused (Connection refused)
    	at java.net.PlainSocketImpl.socketConnect(Native Method)
                                  	at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:350)
    	at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:206)
    	at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:188)
    	at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:392)
    	at java.net.Socket.connect(Socket.java:589)
    	at com.mysql.jdbc.StandardSocketFactory.connect(StandardSocketFactory.java:211)
    	at com.mysql.jdbc.MysqlIO.<init>(MysqlIO.java:301)
    	... 24 more
    

原因:没有开启远程登录,需要修改配置

        **解决方案:**
#查看状态(防火墙是inactive状态)
sudo ufw status
#查看端口
netstat -an | grep 3306

07-5-sqoop解决连接不上的问题

        ~~~shell

#编辑端口
#注释掉43行的bind-address
sudo vim /etc/mysql/mysql.conf.d/mysqld.cnf

##修改端口,需要重启虚拟机
sudo reboot

07-6-sqoop解决连接不上的问题

成功状态

07-7-连接MySQL成功状态

​ **如果Sqoop转移数据到Hive不成功需注意:**之前Hive初始化是在单机伪分布式状态下进行的,和现在集群状态不符,需要重新格式化HIve,删除MySQL的hive元数据库

#hive如果想重新配置的同学
#在配置完master的hive之后,不要初始化,根据情形进行下面操作
#情形一:如果单机节点没有配好,
    #按照Hive单机的安装步骤,在master配置完hive后,需要同步给slave1和slave2
    scp /usr/local/hive hadoop@slave1:/usr/local/
    scp /usr/local/hive hadoop@slave2:/usr/local/

    #同步系统环境变量
    scp /home/hadoop/.bashrc  hadoop@slave1:/home/hadoop
    scp /home/hadoop/.bashrc  hadoop@slave2:/home/hadoop

    #三个节点上刷新
    source /home/hadoop/.bashrc

#情形二:单机已经成功,其他节点是克隆出来的
    #查看mysql数据里的hive元数据信息
    #查看默认的账号和密码,使用以下命令:
    sudo cat /etc/mysql/debian.cnf
    mysql -u debian-sys-maint -p 
    #输入cat命令显示的密码

    #当前节点数据库有哪些
    show databases;

    #查看的密码
    #三个节点都要执行超级用户登录后,查看有没有hive的数据库,有的话删除
    drop database hive;

    #三个节点初始化操作
    schematool -dbType mysql -initSchema

验证状态-Hive初始化成功:

07-4-Hive重新格式化

再次执行查询数据库命令:

#测试能否成功连接数据库
sqoop list-databases --connect jdbc:mysql://master:3306/?useSSL=false --username sqoop --password 123456

1.3.4 使用前的数据准备

1.3.4.1 mysql数据准备(下面操作可在dbeaver中进行)

07-8-MySQL准备

#(1)使用sqoop用户登录MySQL,使用以下命令:
#如果使用dbeaver连接MySQL,不用在输入这步命令了
mysql -u sqoop -p

#(2)创建并使用使用sqoop数据库,使用以下命令:
create database sqoop
use sqoop

#(3)创建student表用于演示导入MySQL数据到HDFS,使用以下命令:
CREATE TABLE IF NOT EXISTS `student`(
`id` int PRIMARY KEY COMMENT '编号',
	`name` varchar(20) COMMENT '名字',
	`age` int COMMENT '年龄'
)COMMENT '学生表';

#(4)	向student表插入一些数据,使用以下命令:
INSERT INTO student VALUES(1, 'zhangsan', 20);
INSERT INTO student VALUES(2, 'lisi', 24);
INSERT INTO student VALUES(3, 'wangwu', 18);
INSERT INTO student VALUES(4, 'zhaoliui', 22);

#(5)	创建student2表用于装载Hive导出的数据,使用以下命令:
CREATE TABLE IF NOT EXISTS `student2`(
`id` int PRIMARY KEY COMMENT '编号',
`name` varchar(20) COMMENT '名字',
`age` int COMMENT '年龄'
)COMMENT '学生表';

dbeaver远程登录MySQL失败:

image-20221024171548427

#查看状态
sudo ufw status
#查看端口
netstat -an | grep 3306

#编辑端口
#注释掉43行的bind-address
sudo vim /etc/mysql/mysql.conf.d/mysqld.cnf 
#bind-address           = 127.0.0.1

##修改端口,需要重启虚拟机
sudo reboot

数据准备完成后

  • student表

07-9连接MySQL

  • student2表:

07-10准备Hive表

1.3.4.2 Hive的准备(也在dbeaver中执行):
--(1)	启动hive,使用以下命令:
hiveserver2
--(2)	打开DBeaver连接Hive

--(3)	创建sqoop数据库,使用以下命令:
CREATE DATABASE sqoop;

--(4)	使用sqoop数据库,使用以下命令:
USE sqoop;

--(5)	创建student表用于装载MySQL导入的数据,使用以下命令:
CREATE TABLE IF NOT EXISTS student(
		id     INT     COMMENT '编号',
		name   STRING  COMMENT '名字',
		age    INT     COMMENT '年龄'
) COMMENT '学生表'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ' ';
  • 如果搭建完HadoopHA后在启动Hive报错
hive启动时,提示java.net.UnknownHostException:ns

04-hive报错异常

注意复制HDFS的core-site.xml和hdfs-site.xml到hive目录的conf下面

cp /usr/local/hadoop/etc/hadoop/hdfs-site.xml /usr/local/hive/conf
cp /usr/local/hadoop/etc/hadoop/core-site.xml /usr/local/hive/conf

1.5 Sqoop命令

Sqoop 的常用命令

命令说明
list-databases列出所有数据库名
list-tables列出某个数据库下所有表
import将数据导入到 HDFS 集群,hive,hbase,hdfs本身等等
export将 HDFS 集群数据导出
help打印 sqoop 帮助信息
version打印 sqoop 版本信息

Sqoop 的公共参数

命令说明
–connect连接关系型数据库的URL
–username连接数据库的用户名
–password连接数据库的密码

Sqoop的 import 命令参数

参数说明
–fields-terminated-byHive中的列分隔符,默认是逗号
–lines-terminated-byHive中的行分隔符,默认是\n
–append将数据追加到HDFS中已经存在的DataSet中,如果使用该参数,sqoop会把数据先导入到临时文件目录,再合并。
–columns指定要导入的字段
–m或–num-mappers启动N个map来并行导入数据,默认4个。
–query或**–e**将查询结果的数据导入,使用时必须伴随参–target-dir,–hive-table,如果查询中有where条件,则条件后必须加上$CONDITIONS关键字
–table 关系数据库的表名
–target-dir 指定导入数据存储的HDFS路径
–null-stringstring类型的列如果null,替换为指定字符串
–null-non-string非string类型的列如果null,替换为指定字符串
–check-column作为增量导入判断的列名
–incrementalmode:append或lastmodified
–last-value指定某一个值,用于标记增量导入的位置

Sqoop 的 export 命令参数

参数说明
–input-fields-terminated-byHive中的列分隔符,默认是逗号
–input-lines-terminated-byHive中的行分隔符,默认是\n
–export-dir存放数据的HDFS的源目录
-m–num-mappers启动N个map来并行导出数据,默认4个
–table指定导出到哪个RDBMS中的表
–update-key对某一列的字段进行更新操作
–update-modeupdateonly或allowinsert(默认)

Sqoop 的命令案例

  • 导入到HDFS
#查看MySQL中已有的数据库名称
sqoop list-databases --connect jdbc:mysql://localhost:3306/ --username sqoop --password 123456

#查看MySQL中Sqoop数据库中的表,使用以下命令
sqoop list-tables --connect jdbc:mysql://localhost:3306/sqoop --username sqoop --password 123456

#导入全部MySQL数据到HDFS,执行以下命令
sqoop import --connect jdbc:mysql://localhost:3306/sqoop --username sqoop --password 123456 --table student --target-dir /user/student --delete-target-dir -m 1

#执行完成后,去HDFS查看数据是否导入成功,使用以下命令:
hdfs dfs -cat /user/student/part-m-00000

#导入部分mysql数据到HDFS(导入时筛选)
#--	query不与--table同时使用
#必须在where后面加上$CONDITIONS
sqoop import --connect jdbc:mysql://localhost:3306/sqoop --username sqoop --password 123456 --target-dir /user/student --delete-target-dir -m 1 --query 'select * from student where age <20 and $CONDITIONS'

查看–target-dir指定的路径

05-hdfs上web管理界面查看内容

  • 导入到Hive

    #导入MySQL数据到hive
    sqoop import --connect jdbc:mysql://localhost:3306/sqoop --username sqoop  --password 123456 --table student --target-dir /user/student2 --delete-target-dir --hive-import --fields-terminated-by " " --columns id,name,age --hive-overwrite --hive-table sqoop.student -m 1
    
    #导入部分MySQL数据到hive(覆盖导入)
    sqoop import --connect jdbc:mysql://localhost:3306/sqoop --username sqoop --password 123456 --target-dir /user/student2 --delete-target-dir -m 1 --query 'select * from student where age <20 and $CONDITIONS' --hive-import --fields-terminated-by " " --columns id,name,age --hive-overwrite --hive-table sqoop.student2 
    
    #增量导入部分MySQL数据到hive
    #--incremental append不能和--delete-target-dir一起用
    sqoop import --connect jdbc:mysql://localhost:3306/sqoop --username sqoop --password 123456 --table student --target-dir /user/student2 --hive-import --fields-terminated-by " " --columns id,name,age  --hive-table sqoop.student2 --check-column id --incremental append --last-value 3 -m 1
    
    • 问题:导入数据权限不足,导入hive失败

      • 06-web管理错误

        • Hdfs页面操作文件出现 Permission denied: user=dr.who,

        • #在xshell
          hdfs dfs -chmod -R 755 /
          
  • 导入到HBase

#导入数据到HBase,需要提前创建对应的表student
#导入数据之前
hbase shell
create 'student','info'

#开始执行导入命令
sqoop import --connect jdbc:mysql://localhost:3306/sqoop --username sqoop  --password 123456 -table student -hbase-table "student" --hbase-row-key "id" --column-family "info" --columns "id,name,age" --split-by id -m -1
  • Hive导出到MySQL
#Sqoop 的导出命令案例
sqoop export --connect jdbc:mysql://localhost:3306/sqoop --username sqoop --password 123456 --table student2 --export-dir /usr/local/hive/warehouse/sqoop.db/student --input-fields-terminated-by " " -m 1

外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

2. Flume

2.1Flume简介

  • Flume是一个分布式的、高可靠的、高可用的将大批量的不同数据源日志数据收集、聚合、移动**到数据中心(**HDFS)进行存储的系统

    • 1、可以高速采集数据,采集的数据能够以想要的文件格式压缩方式存储在hdfs上;

    • 2、事务功能保证了数据在采集的过程中数据不丢失;

      • 原子性
    • 3、部分Source保证了Flume挂了以后重启依旧能够继续在上一次采集点采集数据,真正做到数据零丢失

2.2Flume架构

  • Agent 是 Flume 中最小独立运行单位,一个 agent 就是一个 JVM(java虚拟机)
    • 含有三个核心组件,分别是 source、channel 和 sink
    • 08-flume原理

2.3 Flume安装

#下载、上传、解压、重命名和授权
https://mirrors.tuna.tsinghua.edu.cn/apache/flume/1.9.0/apache-flume-1.9.0-bin.tar.gz


#上传到 /home/hadoop 目录
sudo tar -xvf apache-flume-1.9.0-bin.tar.gz -C /usr/local

sudo mv /usr/local/apache-flume-1.9.0-bin/ /usr/local/flume

sudo chown -R hadoop /usr/local/flume

2.4 Flume配置

配置环境变量

#编辑环境变量
vim /home/hadoop/.bashrc

#在环境变量最后添加以下内容
export FLUME_HOME=/usr/local/flume
export PATH=$PATH:$FLUME_HOME/bin

#刷新环境变量
source /home/hadoop/.bashrc

配置 Agent

# 为 agent 起个名字叫做 a1
# 设置 a1 的 sources 叫做 r1
a1.sources = r1

# 设置 a1 的 sinks 叫做 k1
a1.sinks = k1

# 设置 a1 的 channels 叫做 c1
a1.channels  = c1

配置Source

# 设置 r1 的类型是 exec,用于采集命令产生的数据
a1.sources.r1.type = exec

# 设置 r1 采集 tail -F 命令产生的数据
a1.sources.r1.command = tail -F /home/hadoop/tail-test.txt

配置 Channel

  • 两种常见类型:MemoryChannel和FileChannel
# 设置 c1 的类型是 memory
a1.channels.c1.type = memory

# 设置 c1 的缓冲区容量
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

配置 Sink

# 设置 k1 的类型是 hdfs
a1.sinks.k1.type = hdfs
# 设置 k1 输出路径,按照时间在 hdfs 上创建相应的目录
a1.sinks.k1.hdfs.path = /flume/events/%y-%m-%d/%H%M/%S
a1.sinks.k1.hdfs.filePrefix = events-
# 设置 k1 输出的数据保存为文本
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.writeFormat = Text
# 把时间戳放入数据的头中
a1.sinks.k1.hdfs.useLocalTimeStamp = true

组装 Source、Channel 和 Sink

# 设置 r1 连接 c1
a1.sources.r1.channels = c1

# 设置 k1 连接 c1
a1.sinks.k1.channel = c1

2.5 Flume使用

了解tail -F的命令

#(1)进入/home/hadoop目录,使用以下命令:
cd /home/hadoop/
#(2)创建touch tail-test.txt文件,使用以下命令:
touch tail-test.txt
#(3)向tail-test.txt文件中追加一些内容,使用以下命令:
echo 'hello 11111' >> tail-test.txt
echo 'hello 22222'>> tail-test.txt
echo 'hello 33333'>> tail-test.txt
#(4)查看tail-test.txt文件中的内容,使用以下命令:
cat tail-test.txt
#(5)复制(新开)一个xshell窗口监控tail-test.txt文件内容的变化,使用以下命令:
tail -F tail-test.txt
#(6)回到上一个xshell窗口,继续向tail-test.txt文件中追加一些内容,使用以下命令:
echo 'hello 44444' >> tail-test.txt
echo 'hello 55555'>> tail-test.txt
echo 'hello 66666'>> tail-test.txt
#查看tail -F命令是否监控到内容的变化

使用flume

目标:把tail-test.txt文件中新增的内容给采集到HDFS

#搭配着Flume把tail-test.txt文件中新增的内容给采集到HDFS上。
#(1)新开一个xshell窗口,创建exec-memory-hdfs.properties文件,使用以下命令:
touch exec-memory-hdfs.properties
#(2)编辑touch exec-memory-hdfs.properties文件,填写以下内容:
sudo vim exec-memory-hdfs.properties
# 单节点的 flume 配置文件
# 为 agent 起个名字叫做 a1
# 设置 a1 的 sources 叫做 r1
a1.sources = r1

# 设置 a1 的 sinks 叫做 k1
a1.sinks = k1

# 设置 a1 的 channels 叫做 c1
a1.channels  = c1

# 设置 r1 的类型是 exec,用于采集命令产生的数据
a1.sources.r1.type = exec

# 设置 r1 采集 tail -F 命令产生的数据
a1.sources.r1.command = tail -F /home/hadoop/tail-test.txt

# 设置 c1 的类型是 memory
a1.channels.c1.type = memory

# 设置 c1 的缓冲区容量
a1.channels.c1.capacity = 1000
a1.channels.c1.transactionCapacity = 100

# 设置 k1 的类型是 hdfs
a1.sinks.k1.type = hdfs

# 设置 k1 输出路径,按照时间在 hdfs 上创建相应的目录
a1.sinks.k1.hdfs.path = /flume/events/%y-%m-%d/%H%M/%S
a1.sinks.k1.hdfs.filePrefix = events-

# 设置 k1 输出的数据保存为文本
a1.sinks.k1.hdfs.fileType = DataStream
a1.sinks.k1.hdfs.writeFormat = Text

# 把时间戳放入数据的头中
a1.sinks.k1.hdfs.useLocalTimeStamp = true

# 设置 r1 连接 c1
a1.sources.r1.channels = c1

# 设置 k1 连接 c1
a1.sinks.k1.channel = c1

启动 Flume

  • 启动三个节点zookeeper
zkServer.sh start
  • 先启动hdfs和yarn
start-dfs.sh 
start-yarn.sh
  • 启动 Flume
#启动 Flume
flume-ng agent -n a1 -c conf -f /home/hadoop/exec-memory-hdfs.properties

验证flume

#(4)在第一个xshell窗口大量的向tail-test.txt文件中追加数据
echo 'hello 44444' >> tail-test.txt
echo 'hello 55555' >> tail-test.txt
echo 'hello 6666' >> tail-test.txt

#2. 在xshell里,使用命令
hdfs dfs -cat /flume/events/目录的名称/文件名,可以看到数据
  • 去HDFS的web监控页面查看是否采集到数据
  1. 能看到有新生成的目录

09-flume验证

  1. 在xshell里,使用命令

    hdfs dfs -cat /flume/events/目录的名称/文件名,可以看到数据
    

10-flume验证

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1133264.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux区分文件类型,file指令,目录权限,umask掩码,共享文件,Linux中的一些有趣指令

file指令&#xff0c;Linux区分文件类型&#xff0c;目录权限&#xff0c;umask掩码&#xff0c;共享文件&#xff0c;Linux中的一些有趣指令 1.Linux中是如何区分文件类型的2. file指令3.目录权限4.umask掩码5.粘滞位6.Linux中的一些有趣指令 所属专栏&#xff1a;Linux学习❤…

计算机网络-TCP协议

面向连接的运输&#xff1a;TCP TCP连接 TCP被称为面向连接的&#xff0c;因为在应用程序开始互传数据之前&#xff0c;TCP会先建立一个连接&#xff0c;该连接的建立涉及到三次“握手”。 TCP的连接不是一条真实存在的电路&#xff0c;而是一条逻辑链接&#xff0c;其共同状…

EL表达式和JSTL标签库

2023.10.25 EL表达式是什么&#xff1f; EL表达式&#xff0c;Expression Language&#xff08;表达式语言&#xff09;&#xff0c;可以代替JSP中的java代码&#xff0c;让JSP文件中的程序看起来更加整洁&#xff0c;美观。 由于JSP中夹杂着各种java代码&#xff0c;例如<…

MySQL---表的增查改删(CRUD进阶)

文章目录 数据库约束表的设计一对一一对多多对多 新增查询聚合查询分组查询联合查询内连接外连接自连接子查询合并查询 数据库约束 数据库约束就是指&#xff1a;程序员定义一些规则对数据库中的数据进行限制。这样数据库会在新增和修改数据的时候按照这些限制&#xff0c;对数…

[ACTF2020 新生赛]Exec

【解题过程】 1.打开链接 得到一个能ping 的网站&#xff0c;可以推测这个可以在终端运行的网站。 2.解题思路 在执行的时候我们可以想到命令执行的“&#xff1b;”分号的作用&#xff1a;命令用分号分隔开来&#xff0c;表示它们是两个独立的命令&#xff0c;需要依次执行。…

【Docker】Docker的网络

Docker提供了多种内置的网络模式&#xff0c;用于在容器之间建立网络连接。这些网络模式&#xff0c;包括桥接网络、主机网络、无网络模式。我们将主要探讨每种网络模式的优缺点、适用场景。 桥接网络 桥接网络是Docker的默认网络模式。在桥接网络中&#xff0c;Docker会为每…

Pytorch代码入门学习之分类任务(一):搭建网络框架

目录 一、网络框架介绍 二、导包 三、定义卷积神经网络 3.1 代码展示 3.2 定义网络的目的 3.3 Pytorch搭建网络 四、测试网络效果 一、网络框架介绍 网络理解&#xff1a; 将32*32大小的灰度图片&#xff08;下述的代码中输入为32*32大小的RGB彩色图片&#xff09;&…

论多段图的最短路径问题(我认为本质上还是暴力枚举法)

比如说这道题&#xff1a;我向前推进 从0到11的最短路径 按照图可以分5段&#xff0c;v1 是第一阶段 0&#xff0c;v2是第二段 有1&#xff0c;2&#xff0c;3&#xff0c;4 从0开始&#xff0c;路径为0&#xff0c;所以m&#xff08;1&#xff0c;0&#xff09;0&#xff1b…

单片机核心/RTOS必备 (ARM汇编)

ARM汇编概述 一开始&#xff0c;ARM公司发布两类指令集&#xff1a; ARM指令集&#xff0c;这是32位的&#xff0c;每条指令占据32位&#xff0c;高效&#xff0c;但是太占空间。Thumb指令集&#xff0c;这是16位的&#xff0c;每条指令占据16位&#xff0c;节省空间。 要节…

reqable(小黄鸟)+雷电抓包安卓APP

x 下载证书保存到雷电模拟器根目录(安装位置) 在根目录打开cmd执行命令 F:\Program\leidian\LDPlayer9>adb push reqable-ca.crt /system/etc/security/cacerts/364618e0.0 reqable-ca.crt: 1 file pushed, 0 skipped. 0.8 MB/s (1773 bytes in 0.002s)如果是powershell…

Hadoop3.0大数据处理学习4(案例:数据清洗、数据指标统计、任务脚本封装、Sqoop导出Mysql)

案例需求分析 直播公司每日都会产生海量的直播数据&#xff0c;为了更好地服务主播与用户&#xff0c;提高直播质量与用户粘性&#xff0c;往往会对大量的数据进行分析与统计&#xff0c;从中挖掘商业价值&#xff0c;我们将通过一个实战案例&#xff0c;来使用Hadoop技术来实…

Node编写更新用户头像接口

目录 定义路由和处理函数 验证表单数据 ​编辑 实现更新用户头像的功能 定义路由和处理函数 向外共享定义的更新用户头像处理函数 // 更新用户头像的处理函数 exports.updateAvatar (req, res) > {res.send(更新成功) } 定义更新用户头像路由 // 更新用户头像的路由…

Liunx-Kubernetes安装

安装Kubernetes Kubernetes有多种部署方式&#xff0c;目前主流的方式有kubeadm、minikube、二进制包 minikube&#xff1a;一个用于快速搭建单节点kubernetes的工具kubeadm&#xff1a;一个用于快速搭建kubernetes集群的工具二进制包&#xff1a;从官网下载每个组件的二进制…

浏览器多开,数据之间相互不干扰

方法很简单 在浏览器快捷方式中&#xff0c;快捷键点开属性&#xff0c;在目标中添加--user-data-dirD:\chrome\1

【蓝桥每日一题]-贪心(保姆级教程 篇1)#拼数 #合并果子 #凌乱yyy

目录 题目&#xff1a; 拼数 思路&#xff1a; 题目&#xff1a; 合并果子 思路&#xff1a; 题目&#xff1a;凌乱yyy 思路&#xff1a; 题目&#xff1a;拼数 思路&#xff1a; 思路很简单。举个例子&#xff1a;对于a321,b32。我们发现ab32132,ba32321&#xff0c;那么…

TypeScript学习 | 泛型

简介 泛型是指在定义函数、接口或类的时候&#xff0c;不预先指定具体的类型&#xff0c;而在使用的时候再指定类型的一种特性 作用 可以保证类型安全的前提下&#xff0c;让函数、接口或类与多种类型一起工作&#xff0c;从而实现复用 基本使用 举个例子&#xff1a; 创…

【TGRS 2023】RingMo: A Remote Sensing Foundation ModelWith Masked Image Modeling

RingMo: A Remote Sensing Foundation Model With Masked Image Modeling, TGRS 2023 论文&#xff1a;https://ieeexplore.ieee.org/stamp/stamp.jsp?tp&arnumber9844015 代码&#xff1a;https://github.com/comeony/RingMo MindSpore/RingMo-Framework (gitee.com) …

解决:vscode和jupyter远程连接无法创建、删除文件的问题(permission denied)

目录 问题&#xff1a;vscode和jupyter远程连接服务器无法创建、删除文件的问题原因&#xff1a;代码文件的权限不够解决方法&#xff1a;1.ls -l查看目录所在组&#xff0c;权限2.chown修改拥有者和所在组 问题&#xff1a;vscode和jupyter远程连接服务器无法创建、删除文件的…

【兔子王赠书第3期】《案例学Python(进阶篇)》

文章目录 前言推荐图书本书特色本书目录本书样章本书读者对象粉丝福利丨评论免费赠书尾声 前言 随着人工智能和大数据的蓬勃发展&#xff0c;Python将会得到越来越多开发者的喜爱和应用。因为Python语法简单&#xff0c;学习速度快&#xff0c;大家可以用更短的时间掌握这门语…

Spring学习笔记—JDK动态代理

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; Spring专栏 ✨特色专栏&#xff1a; M…