Hadoop3.0大数据处理学习4(案例:数据清洗、数据指标统计、任务脚本封装、Sqoop导出Mysql)

news2024/11/16 8:45:27

案例需求分析

直播公司每日都会产生海量的直播数据,为了更好地服务主播与用户,提高直播质量与用户粘性,往往会对大量的数据进行分析与统计,从中挖掘商业价值,我们将通过一个实战案例,来使用Hadoop技术来实现对直播数据的统计与分析。下面是简化的日志文件,详细的我会更新在Gitee hadoop_study/hadoopDemo1 · Huathy/study-all/

{"id":"1580089010000","uid":"12001002543","nickname":"jack2543","gold":561,"watchnumpv":1697,"follower":1509,"gifter":2920,"watchnumuv":5410,"length":3542,"exp":183}
{"id":"1580089010001","uid":"12001001853","nickname":"jack1853","gold":660,"watchnumpv":8160,"follower":1781,"gifter":551,"watchnumuv":4798,"length":189,"exp":89}
{"id":"1580089010002","uid":"12001003786","nickname":"jack3786","gold":14,"watchnumpv":577,"follower":1759,"gifter":2643,"watchnumuv":8910,"length":1203,"exp":54}

原始数据清洗代码

  1. 清理无效记录:由于原始数据是通过日志方式进行记录的,在使用日志采集工具采集到HDFS后,还需要对数据进行清洗过滤,丢弃缺失字段的数据,针对异常字段值进行标准化处理。
  2. 清除多余字段:由于计算时不会用到所有的字段。

编码

DataCleanMap

package dataClean;

import com.alibaba.fastjson.JSON;
import com.alibaba.fastjson.JSONObject;
import org.apache.commons.lang3.StringUtils;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * @author Huathy
 * @date 2023-10-22 22:15
 * @description 实现自定义map类,在里面实现具体的清洗逻辑
 */
public class DataCleanMap extends Mapper<LongWritable, Text, Text, Text> {
    /**
     * 1. 从原始数据中过滤出来需要的字段
     * 2. 针对核心字段进行异常值判断
     *
     * @param key
     * @param value
     * @param context
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        String valStr = value.toString();
        // 将json字符串数据转换成对象
        JSONObject jsonObj = JSON.parseObject(valStr);
        String uid = jsonObj.getString("uid");
        // 这里建议使用getIntValue(返回0)而不是getInt(异常)。
        int gold = jsonObj.getIntValue("gold");
        int watchnumpv = jsonObj.getIntValue("watchnumpv");
        int follower = jsonObj.getIntValue("follower");
        int length = jsonObj.getIntValue("length");
        // 过滤异常数据
        if (StringUtils.isNotBlank(valStr) && (gold * watchnumpv * follower * length) >= 0) {
            // 组装k2,v2
            Text k2 = new Text();
            k2.set(uid);
            Text v2 = new Text();
            v2.set(gold + "\t" + watchnumpv + "\t" + follower + "\t" + length);
            context.write(k2, v2);
        }
    }
}

DataCleanJob

package dataClean;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * @author Huathy
 * @date 2023-10-22 22:02
 * @description 数据清洗作业
 * 1. 从原始数据中过滤出来需要的字段
 * uid gold watchnumpv(总观看)、follower(粉丝关注数量)、length(总时长)
 * 2. 针对以上五个字段进行判断,都不应该丢失或为空,否则任务是异常记录,丢弃。
 * 若个别字段丢失,则设置为0.
 * <p>
 * 分析:
 * 1. 由于原始数据是json格式,可以使用fastjson对原始数据进行解析,获取指定字段的内容
 * 2. 然后对获取到的数据进行判断,只保留满足条件的数据
 * 3. 由于不需要聚合过程,只是一个简单的过滤操作,所以只需要map阶段即可,不需要reduce阶段
 * 4. 其中map阶段的k1,v1的数据类型是固定的<LongWritable,Text>,k2,v2的数据类型是<Text,Text>k2存储主播ID,v2存储核心字段
 * 中间用\t制表符分隔即可
 */
public class DataCleanJob {
    public static void main(String[] args) throws Exception {
        System.out.println("inputPath  => " + args[0]);
        System.out.println("outputPath  => " + args[1]);
        String path = args[0];
        String path2 = args[1];

        // job需要的配置参数
        Configuration configuration = new Configuration();
        // 创建job
        Job job = Job.getInstance(configuration, "wordCountJob");
        // 注意:这一行必须设置,否则在集群的时候将无法找到Job类
        job.setJarByClass(DataCleanJob.class);
        // 指定输入文件
        FileInputFormat.setInputPaths(job, new Path(path));
        FileOutputFormat.setOutputPath(job, new Path(path2));

        // 指定map相关配置
        job.setMapperClass(DataCleanMap.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(Text.class);
        // 指定reduce 数量0,表示禁用reduce
        job.setNumReduceTasks(0);

        // 提交任务
        job.waitForCompletion(true);
    }
}

运行

## 运行命令
[root@cent7-1 hadoop-3.2.4]# hadoop jar hadoopDemo1-0.0.1-SNAPSHOT-jar-with-dependencies.jar dataClean.DataCleanJob hdfs://cent7-1:9000/data/videoinfo/231022 hdfs://cent7-1:9000/data/res231022
inputPath  => hdfs://cent7-1:9000/data/videoinfo/231022
outputPath  => hdfs://cent7-1:9000/data/res231022
2023-10-22 23:16:15,845 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2023-10-22 23:16:16,856 WARN mapreduce.JobResourceUploader: Hadoop command-line option parsing not performed. Implement the Tool interface and execute your application with ToolRunner to remedy this.
2023-10-22 23:16:17,041 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: /tmp/hadoop-yarn/staging/root/.staging/job_1697985525421_0002
2023-10-22 23:16:17,967 INFO input.FileInputFormat: Total input files to process : 1
2023-10-22 23:16:18,167 INFO mapreduce.JobSubmitter: number of splits:1
2023-10-22 23:16:18,873 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1697985525421_0002
2023-10-22 23:16:18,874 INFO mapreduce.JobSubmitter: Executing with tokens: []
2023-10-22 23:16:19,157 INFO conf.Configuration: resource-types.xml not found
2023-10-22 23:16:19,158 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'.
2023-10-22 23:16:19,285 INFO impl.YarnClientImpl: Submitted application application_1697985525421_0002
2023-10-22 23:16:19,345 INFO mapreduce.Job: The url to track the job: http://cent7-1:8088/proxy/application_1697985525421_0002/
2023-10-22 23:16:19,346 INFO mapreduce.Job: Running job: job_1697985525421_0002
2023-10-22 23:16:31,683 INFO mapreduce.Job: Job job_1697985525421_0002 running in uber mode : false
2023-10-22 23:16:31,689 INFO mapreduce.Job:  map 0% reduce 0%
2023-10-22 23:16:40,955 INFO mapreduce.Job:  map 100% reduce 0%
2023-10-22 23:16:43,012 INFO mapreduce.Job: Job job_1697985525421_0002 completed successfully
2023-10-22 23:16:43,153 INFO mapreduce.Job: Counters: 33
	File System Counters
		FILE: Number of bytes read=0
		FILE: Number of bytes written=238970
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=24410767
		HDFS: Number of bytes written=1455064
		HDFS: Number of read operations=7
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=2
		HDFS: Number of bytes read erasure-coded=0
	Job Counters 
		Launched map tasks=1
		Data-local map tasks=1
		Total time spent by all maps in occupied slots (ms)=7678
		Total time spent by all reduces in occupied slots (ms)=0
		Total time spent by all map tasks (ms)=7678
		Total vcore-milliseconds taken by all map tasks=7678
		Total megabyte-milliseconds taken by all map tasks=7862272
	Map-Reduce Framework
		Map input records=90000
		Map output records=46990
		Input split bytes=123
		Spilled Records=0
		Failed Shuffles=0
		Merged Map outputs=0
		GC time elapsed (ms)=195
		CPU time spent (ms)=5360
		Physical memory (bytes) snapshot=302153728
		Virtual memory (bytes) snapshot=2588925952
		Total committed heap usage (bytes)=214958080
		Peak Map Physical memory (bytes)=302153728
		Peak Map Virtual memory (bytes)=2588925952
	File Input Format Counters 
		Bytes Read=24410644
	File Output Format Counters 
		Bytes Written=1455064
[root@cent7-1 hadoop-3.2.4]# 

## 统计输出文件行数
[root@cent7-1 hadoop-3.2.4]# hdfs dfs -cat hdfs://cent7-1:9000/data/res231022/* | wc -l
46990
## 查看原始数据记录数
[root@cent7-1 hadoop-3.2.4]# hdfs dfs -cat hdfs://cent7-1:9000/data/videoinfo/231022/* | wc -l
90000

数据指标统计

  1. 对数据中的金币数量,总观看PV,粉丝关注数量,视频总时长等指标进行统计(涉及四个字段为了后续方便,可以自定义Writable)
  2. 统计每天开播时长最长的前10名主播以及对应的开播时长

自定义Writeable代码实现

由于原始数据涉及多个需要统计的字段,可以将这些字段统一的记录在一个自定义的数据类型中,方便使用

package videoinfo;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
 * @author Huathy
 * @date 2023-10-22 23:32
 * @description 自定义数据类型,为了保存主播相关核心字段,方便后期维护
 */
public class VideoInfoWriteable implements Writable {
    private long gold;
    private long watchnumpv;
    private long follower;
    private long length;

    public void set(long gold, long watchnumpv, long follower, long length) {
        this.gold = gold;
        this.watchnumpv = watchnumpv;
        this.follower = follower;
        this.length = length;
    }

    public long getGold() {
        return gold;
    }

    public long getWatchnumpv() {
        return watchnumpv;
    }

    public long getFollower() {
        return follower;
    }

    public long getLength() {
        return length;
    }

    @Override
    public void write(DataOutput dataOutput) throws IOException {
        dataOutput.writeLong(gold);
        dataOutput.writeLong(watchnumpv);
        dataOutput.writeLong(follower);
        dataOutput.writeLong(length);
    }

    @Override
    public void readFields(DataInput dataInput) throws IOException {
        this.gold = dataInput.readLong();
        this.watchnumpv = dataInput.readLong();
        this.follower = dataInput.readLong();
        this.length = dataInput.readLong();
    }

    @Override
    public String toString() {
        return gold + "\t" + watchnumpv + "\t" + follower + "\t" + length;
    }
}

基于主播维度 videoinfo

VideoInfoJob

package videoinfo;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * @author Huathy
 * @date 2023-10-22 23:27
 * @description 数据指标统计作业
 * 1. 基于主播进行统计,统计每个主播在当天收到的总金币数量,总观看PV,总粉丝关注量,总视频开播市场
 * 分析
 * 1. 为了方便统计主播的指标数据吗,最好是把这些字段整合到一个对象中,这样维护方便
 * 这样就需要自定义Writeable
 * 2. 由于在这里需要以主播维度进行数据的聚合,所以需要以主播ID作为KEY,进行聚合统计
 * 3. 所以Map节点的<k2,v2>是<Text,自定义Writeable>
 * 4. 由于需要聚合,所以Reduce阶段也需要
 */
public class VideoInfoJob {
    public static void main(String[] args) throws Exception {
        System.out.println("inputPath  => " + args[0]);
        System.out.println("outputPath  => " + args[1]);
        String path = args[0];
        String path2 = args[1];

        // job需要的配置参数
        Configuration configuration = new Configuration();
        // 创建job
        Job job = Job.getInstance(configuration, "VideoInfoJob");
        // 注意:这一行必须设置,否则在集群的时候将无法找到Job类
        job.setJarByClass(VideoInfoJob.class);
        // 指定输入文件
        FileInputFormat.setInputPaths(job, new Path(path));
        FileOutputFormat.setOutputPath(job, new Path(path2));

        // 指定map相关配置
        job.setMapperClass(VideoInfoMap.class);
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);
        // 指定reduce
        job.setReducerClass(VideoInfoReduce.class);
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);

        // 提交任务
        job.waitForCompletion(true);
    }
}

VideoInfoMap

package videoinfo;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * @author Huathy
 * @date 2023-10-22 23:31
 * @description 实现自定义Map类,在这里实现核心字段的拼接
 */
public class VideoInfoMap extends Mapper<LongWritable, Text, Text, VideoInfoWriteable> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        // 读取清洗后的每一行数据
        String line = value.toString();
        String[] fields = line.split("\t");
        String uid = fields[0];
        long gold = Long.parseLong(fields[1]);
        long watchnumpv = Long.parseLong(fields[1]);
        long follower = Long.parseLong(fields[1]);
        long length = Long.parseLong(fields[1]);

        // 组装K2 V2
        Text k2 = new Text();
        k2.set(uid);

        VideoInfoWriteable v2 = new VideoInfoWriteable();
        v2.set(gold, watchnumpv, follower, length);
        context.write(k2, v2);
    }
}

VideoInfoReduce

package videoinfo;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;

/**
 * @author Huathy
 * @date 2023-10-22 23:31
 * @description 实现自定义Map类,在这里实现核心字段的拼接
 */
public class VideoInfoReduce extends Reducer<Text, VideoInfoWriteable, Text, VideoInfoWriteable> {
    @Override
    protected void reduce(Text key, Iterable<VideoInfoWriteable> values, Context context) throws IOException, InterruptedException {
        // 从v2s中把相同key的value取出来,进行累加求和
        long goldSum = 0;
        long watchNumPvSum = 0;
        long followerSum = 0;
        long lengthSum = 0;
        for (VideoInfoWriteable v2 : values) {
            goldSum += v2.getGold();
            watchNumPvSum += v2.getWatchnumpv();
            followerSum += v2.getFollower();
            lengthSum += v2.getLength();
        }
        // 组装k3 v3
        VideoInfoWriteable videoInfoWriteable = new VideoInfoWriteable();
        videoInfoWriteable.set(goldSum, watchNumPvSum, followerSum, lengthSum);
        context.write(key, videoInfoWriteable);
    }
}

基于主播的TOPN计算

VideoInfoTop10Job

package top10;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

/**
 * @author Huathy
 * @date 2023-10-23 21:27
 * @description 数据指标统计作业
 * 需求:统计每天开播时长最长的前10名主播以及时长信息
 * 分析:
 * 1. 为了统计每天开播时长最长的前10名主播信息,需要在map阶段获取数据中每个主播的ID和直播时长
 * 2. 所以map阶段的k2 v2 为Text LongWriteable
 * 3. 在reduce阶段对相同主播的时长进行累加求和,将这些数据存储到一个临时的map中
 * 4. 在reduce阶段的cleanup函数(最后执行)中,对map集合的数据进行排序处理
 * 5. 在cleanup函数中把直播时长最长的前10名主播信息写出到文件中
 * setup函数在reduce函数开始执行一次,而cleanup在结束时执行一次
 */
public class VideoInfoTop10Job {
    public static void main(String[] args) throws Exception {
        System.out.println("inputPath  => " + args[0]);
        System.out.println("outputPath  => " + args[1]);
        String path = args[0];
        String path2 = args[1];

        // job需要的配置参数
        Configuration configuration = new Configuration();
        // 从输入路径来获取日期
        String[] fields = path.split("/");
        String tmpdt = fields[fields.length - 1];
        System.out.println("日期:" + tmpdt);
        // 生命周期的配置
        configuration.set("dt", tmpdt);
        // 创建job
        Job job = Job.getInstance(configuration, "VideoInfoTop10Job");
        // 注意:这一行必须设置,否则在集群的时候将无法找到Job类
        job.setJarByClass(VideoInfoTop10Job.class);
        // 指定输入文件
        FileInputFormat.setInputPaths(job, new Path(path));
        FileOutputFormat.setOutputPath(job, new Path(path2));

        job.setMapperClass(VideoInfoTop10Map.class);
        job.setReducerClass(VideoInfoTop10Reduce.class);
        // 指定map相关配置
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(LongWritable.class);
        // 指定reduce
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(LongWritable.class);

        // 提交任务
        job.waitForCompletion(true);
    }
}

VideoInfoTop10Map

package top10;

import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

import java.io.IOException;

/**
 * @author Huathy
 * @date 2023-10-23 21:32
 * @description 自定义map类,在这里实现核心字段的拼接
 */
public class VideoInfoTop10Map extends Mapper<LongWritable, Text, Text, LongWritable> {
    @Override
    protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
        // 读取清洗之后的每一行数据
        String line = key.toString();
        String[] fields = line.split("\t");
        String uid = fields[0];
        long length = Long.parseLong(fields[4]);
        Text k2 = new Text();
        k2.set(uid);
        LongWritable v2 = new LongWritable();
        v2.set(length);
        context.write(k2, v2);
    }
}

VideoInfoTop10Reduce

package top10;

import cn.hutool.core.collection.CollUtil;
import org.apache.commons.collections.CollectionUtils;
import org.apache.commons.collections.MapUtils;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;

import java.io.IOException;
import java.util.*;

/**
 * @author Huathy
 * @date 2023-10-23 21:37
 * @description
 */
public class VideoInfoTop10Reduce extends Reducer<Text, LongWritable, Text, LongWritable> {
    // 保存主播ID和开播时长
    Map<String, Long> map = new HashMap<>();

    @Override
    protected void reduce(Text key, Iterable<LongWritable> values, Context context) throws IOException, InterruptedException {
        String k2 = key.toString();
        long lengthSum = 0;
        for (LongWritable v2 : values) {
            lengthSum += v2.get();
        }
        map.put(k2, lengthSum);
    }

    /**
     * 任务初始化的时候执行一次,一般在里面做一些初始化资源连接的操作。(mysql、redis连接操作)
     *
     * @param context
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    protected void setup(Context context) throws IOException, InterruptedException {
        System.out.println("setup method running...");
        System.out.println("context: " + context);
        super.setup(context);
    }

    /**
     * 任务结束的时候执行一次,做关闭资源连接操作
     *
     * @param context
     * @throws IOException
     * @throws InterruptedException
     */
    @Override
    protected void cleanup(Context context) throws IOException, InterruptedException {
        // 获取日期
        Configuration configuration = context.getConfiguration();
        String date = configuration.get("dt");
        // 排序
        LinkedHashMap<String, Long> sortMap = CollUtil.sortByEntry(map, new Comparator<Map.Entry<String, Long>>() {
            @Override
            public int compare(Map.Entry<String, Long> o1, Map.Entry<String, Long> o2) {
                return -o1.getValue().compareTo(o2.getValue());
            }
        });
        Set<Map.Entry<String, Long>> entries = sortMap.entrySet();
        Iterator<Map.Entry<String, Long>> iterator = entries.iterator();
        // 输出
        int count = 1;
        while (count <= 10 && iterator.hasNext()) {
            Map.Entry<String, Long> entry = iterator.next();
            String key = entry.getKey();
            Long value = entry.getValue();
            // 封装K3 V3
            Text k3 = new Text(date + "\t" + key);
            LongWritable v3 = new LongWritable(value);
            // 统计的时候还应该传入日期来用来输出统计的时间,而不是获取当前时间(可能是统计历史)!
            context.write(k3, v3);
            count++;
        }
    }
}

任务定时脚本封装

任务依赖关系:数据指标统计(top10统计以及播放数据统计)依赖数据清洗作业
将任务提交命令进行封装,方便调用,便于定时任务调度

编写任务脚本,并以debug模式执行:sh -x data_clean.sh

任务执行结果监控

针对任务执行的结果进行检测,如果执行失败,则重试任务,同时发送告警信息。

#!/bin/bash
# 建议使用bin/bash形式
# 判读用户是否输入日期,如果没有则默认获取昨天日期。(需要隔几天重跑,灵活的指定日期)
if [ "x$1" = "x" ]; then
  yes_time=$(date +%y%m%d --date="1 days ago")
else
  yes_time=$1
fi

jobs_home=/home/jobs
cleanjob_input=hdfs://cent7-1:9000/data/videoinfo/${yes_time}
cleanjob_output=hdfs://cent7-1:9000/data/videoinfo_clean/${yes_time}
videoinfojob_input=${cleanjob_output}
videoinfojob_output=hdfs://cent7-1:9000/res/videoinfoJob/${yes_time}
top10job_input=${cleanjob_output}
top10job_output=hdfs://cent7-1:9000/res/top10/${yes_time}

# 删除输出目录,为了兼容脚本重跑
hdfs dfs -rm -r ${cleanjob_output}
# 执行数据清洗任务
hadoop jar ${jobs_home}/hadoopDemo1-0.0.1-SNAPSHOT-jar-with-dependencies.jar \
  dataClean.DataCleanJob \
  ${cleanjob_input} ${cleanjob_output}

# 判断数据清洗任务是否成功
hdfs dfs -ls ${cleanjob_output}/_SUCCESS
# echo $? 可以获取上一个命令的执行结果0成功,否则失败
if [ "$?" = "0" ]; then
  echo "clean job execute success ...."
  # 删除输出目录,为了兼容脚本重跑
  hdfs dfs -rm -r ${videoinfojob_output}
  hdfs dfs -rm -r ${top10job_output}
  # 执行指标统计任务1
  echo " execute VideoInfoJob ...."
  hadoop jar ${jobs_home}/hadoopDemo1-0.0.1-SNAPSHOT-jar-with-dependencies.jar \
    videoinfo.VideoInfoJob \
    ${videoinfojob_input} ${videoinfojob_output}
  hdfs dfs -ls ${videoinfojob_output}/_SUCCESS
  if [ "$?" != "0" ]
  then
    echo " VideoInfoJob execute failed .... "
  fi
  # 指定指标统计任务2
  echo " execute VideoInfoTop10Job ...."
  hadoop jar ${jobs_home}/hadoopDemo1-0.0.1-SNAPSHOT-jar-with-dependencies.jar \
    top10.VideoInfoTop10Job \
    ${top10job_input} ${top10job_output}
  hdfs dfs -ls ${top10job_output}/_SUCCESS
  if [ "$?" != "0" ]
  then
    echo " VideoInfoJob execute failed .... "
  fi
else
  echo "clean job execute failed ... date time is ${yes_time}"
  # 给管理员发送短信、邮件
  # 可以在while进行重试
fi

使用Sqoop将计算结果导出到MySQL

Sqoop可以快速的实现hdfs-mysql的导入导出

快速安装Sqoop工具

image.png

image.png

数据导出功能开发,使用Sqoop将MapReduce计算的结果导出到Mysql中

  1. 导出命令
sqoop export \
--connect 'jdbc:mysql://192.168.56.101:3306/data?serverTimezone=UTC&useSSL=false' \
--username 'hdp' \
--password 'admin' \
--table 'top10' \
--export-dir '/res/top10/231022' \
--input-fields-terminated-by "\t"
  1. 导出日志
[root@cent7-1 sqoop-1.4.7.bin_hadoop-2.6.0]# sqoop export \
> --connect 'jdbc:mysql://192.168.56.101:3306/data?serverTimezone=UTC&useSSL=false' \
> --username 'hdp' \
> --password 'admin' \
> --table 'top10' \
> --export-dir '/res/top10/231022' \
> --input-fields-terminated-by "\t"
Warning: /home/sqoop-1.4.7.bin_hadoop-2.6.0//../hcatalog does not exist! HCatalog jobs will fail.
Please set $HCAT_HOME to the root of your HCatalog installation.
Warning: /home/sqoop-1.4.7.bin_hadoop-2.6.0//../accumulo does not exist! Accumulo imports will fail.
Please set $ACCUMULO_HOME to the root of your Accumulo installation.
2023-10-24 23:42:09,452 INFO sqoop.Sqoop: Running Sqoop version: 1.4.7
2023-10-24 23:42:09,684 WARN tool.BaseSqoopTool: Setting your password on the command-line is insecure. Consider using -P instead.
2023-10-24 23:42:09,997 INFO manager.MySQLManager: Preparing to use a MySQL streaming resultset.
2023-10-24 23:42:10,022 INFO tool.CodeGenTool: Beginning code generation
Loading class `com.mysql.jdbc.Driver'. This is deprecated. The new driver class is `com.mysql.cj.jdbc.Driver'. The driver is automatically registered via the SPI and manual loading of the driver class is generally unnecessary.
2023-10-24 23:42:10,921 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `top10` AS t LIMIT 1
2023-10-24 23:42:11,061 INFO manager.SqlManager: Executing SQL statement: SELECT t.* FROM `top10` AS t LIMIT 1
2023-10-24 23:42:11,084 INFO orm.CompilationManager: HADOOP_MAPRED_HOME is /home/hadoop-3.2.4
注: /tmp/sqoop-root/compile/6d507cd9a1a751990abfd7eef20a60c2/top10.java使用或覆盖了已过时的 API。
注: 有关详细信息, 请使用 -Xlint:deprecation 重新编译。
2023-10-24 23:42:23,932 INFO orm.CompilationManager: Writing jar file: /tmp/sqoop-root/compile/6d507cd9a1a751990abfd7eef20a60c2/top10.jar
2023-10-24 23:42:23,972 INFO mapreduce.ExportJobBase: Beginning export of top10
2023-10-24 23:42:23,972 INFO Configuration.deprecation: mapred.job.tracker is deprecated. Instead, use mapreduce.jobtracker.address
2023-10-24 23:42:24,237 INFO Configuration.deprecation: mapred.jar is deprecated. Instead, use mapreduce.job.jar
2023-10-24 23:42:27,318 INFO Configuration.deprecation: mapred.reduce.tasks.speculative.execution is deprecated. Instead, use mapreduce.reduce.speculative
2023-10-24 23:42:27,325 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative
2023-10-24 23:42:27,326 INFO Configuration.deprecation: mapred.map.tasks is deprecated. Instead, use mapreduce.job.maps
2023-10-24 23:42:27,641 INFO client.RMProxy: Connecting to ResourceManager at /0.0.0.0:8032
2023-10-24 23:42:29,161 INFO mapreduce.JobResourceUploader: Disabling Erasure Coding for path: /tmp/hadoop-yarn/staging/root/.staging/job_1698153196891_0015
2023-10-24 23:42:39,216 INFO input.FileInputFormat: Total input files to process : 1
2023-10-24 23:42:39,231 INFO input.FileInputFormat: Total input files to process : 1
2023-10-24 23:42:39,387 INFO mapreduce.JobSubmitter: number of splits:4
2023-10-24 23:42:39,475 INFO Configuration.deprecation: mapred.map.tasks.speculative.execution is deprecated. Instead, use mapreduce.map.speculative
2023-10-24 23:42:40,171 INFO mapreduce.JobSubmitter: Submitting tokens for job: job_1698153196891_0015
2023-10-24 23:42:40,173 INFO mapreduce.JobSubmitter: Executing with tokens: []
2023-10-24 23:42:40,660 INFO conf.Configuration: resource-types.xml not found
2023-10-24 23:42:40,660 INFO resource.ResourceUtils: Unable to find 'resource-types.xml'.
2023-10-24 23:42:41,073 INFO impl.YarnClientImpl: Submitted application application_1698153196891_0015
2023-10-24 23:42:41,163 INFO mapreduce.Job: The url to track the job: http://cent7-1:8088/proxy/application_1698153196891_0015/
2023-10-24 23:42:41,164 INFO mapreduce.Job: Running job: job_1698153196891_0015
2023-10-24 23:43:02,755 INFO mapreduce.Job: Job job_1698153196891_0015 running in uber mode : false
2023-10-24 23:43:02,760 INFO mapreduce.Job:  map 0% reduce 0%
2023-10-24 23:43:23,821 INFO mapreduce.Job:  map 25% reduce 0%
2023-10-24 23:43:25,047 INFO mapreduce.Job:  map 50% reduce 0%
2023-10-24 23:43:26,069 INFO mapreduce.Job:  map 75% reduce 0%
2023-10-24 23:43:27,088 INFO mapreduce.Job:  map 100% reduce 0%
2023-10-24 23:43:28,112 INFO mapreduce.Job: Job job_1698153196891_0015 completed successfully
2023-10-24 23:43:28,266 INFO mapreduce.Job: Counters: 33
	File System Counters
		FILE: Number of bytes read=0
		FILE: Number of bytes written=993808
		FILE: Number of read operations=0
		FILE: Number of large read operations=0
		FILE: Number of write operations=0
		HDFS: Number of bytes read=1297
		HDFS: Number of bytes written=0
		HDFS: Number of read operations=19
		HDFS: Number of large read operations=0
		HDFS: Number of write operations=0
		HDFS: Number of bytes read erasure-coded=0
	Job Counters 
		Launched map tasks=4
		Data-local map tasks=4
		Total time spent by all maps in occupied slots (ms)=79661
		Total time spent by all reduces in occupied slots (ms)=0
		Total time spent by all map tasks (ms)=79661
		Total vcore-milliseconds taken by all map tasks=79661
		Total megabyte-milliseconds taken by all map tasks=81572864
	Map-Reduce Framework
		Map input records=10
		Map output records=10
		Input split bytes=586
		Spilled Records=0
		Failed Shuffles=0
		Merged Map outputs=0
		GC time elapsed (ms)=3053
		CPU time spent (ms)=11530
		Physical memory (bytes) snapshot=911597568
		Virtual memory (bytes) snapshot=10326462464
		Total committed heap usage (bytes)=584056832
		Peak Map Physical memory (bytes)=238632960
		Peak Map Virtual memory (bytes)=2584969216
	File Input Format Counters 
		Bytes Read=0
	File Output Format Counters 
		Bytes Written=0
2023-10-24 23:43:28,282 INFO mapreduce.ExportJobBase: Transferred 1.2666 KB in 60.9011 seconds (21.2968 bytes/sec)
2023-10-24 23:43:28,291 INFO mapreduce.ExportJobBase: Exported 10 records.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1133241.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Node编写更新用户头像接口

目录 定义路由和处理函数 验证表单数据 ​编辑 实现更新用户头像的功能 定义路由和处理函数 向外共享定义的更新用户头像处理函数 // 更新用户头像的处理函数 exports.updateAvatar (req, res) > {res.send(更新成功) } 定义更新用户头像路由 // 更新用户头像的路由…

Liunx-Kubernetes安装

安装Kubernetes Kubernetes有多种部署方式&#xff0c;目前主流的方式有kubeadm、minikube、二进制包 minikube&#xff1a;一个用于快速搭建单节点kubernetes的工具kubeadm&#xff1a;一个用于快速搭建kubernetes集群的工具二进制包&#xff1a;从官网下载每个组件的二进制…

浏览器多开,数据之间相互不干扰

方法很简单 在浏览器快捷方式中&#xff0c;快捷键点开属性&#xff0c;在目标中添加--user-data-dirD:\chrome\1

【蓝桥每日一题]-贪心(保姆级教程 篇1)#拼数 #合并果子 #凌乱yyy

目录 题目&#xff1a; 拼数 思路&#xff1a; 题目&#xff1a; 合并果子 思路&#xff1a; 题目&#xff1a;凌乱yyy 思路&#xff1a; 题目&#xff1a;拼数 思路&#xff1a; 思路很简单。举个例子&#xff1a;对于a321,b32。我们发现ab32132,ba32321&#xff0c;那么…

TypeScript学习 | 泛型

简介 泛型是指在定义函数、接口或类的时候&#xff0c;不预先指定具体的类型&#xff0c;而在使用的时候再指定类型的一种特性 作用 可以保证类型安全的前提下&#xff0c;让函数、接口或类与多种类型一起工作&#xff0c;从而实现复用 基本使用 举个例子&#xff1a; 创…

【TGRS 2023】RingMo: A Remote Sensing Foundation ModelWith Masked Image Modeling

RingMo: A Remote Sensing Foundation Model With Masked Image Modeling, TGRS 2023 论文&#xff1a;https://ieeexplore.ieee.org/stamp/stamp.jsp?tp&arnumber9844015 代码&#xff1a;https://github.com/comeony/RingMo MindSpore/RingMo-Framework (gitee.com) …

解决:vscode和jupyter远程连接无法创建、删除文件的问题(permission denied)

目录 问题&#xff1a;vscode和jupyter远程连接服务器无法创建、删除文件的问题原因&#xff1a;代码文件的权限不够解决方法&#xff1a;1.ls -l查看目录所在组&#xff0c;权限2.chown修改拥有者和所在组 问题&#xff1a;vscode和jupyter远程连接服务器无法创建、删除文件的…

【兔子王赠书第3期】《案例学Python(进阶篇)》

文章目录 前言推荐图书本书特色本书目录本书样章本书读者对象粉丝福利丨评论免费赠书尾声 前言 随着人工智能和大数据的蓬勃发展&#xff0c;Python将会得到越来越多开发者的喜爱和应用。因为Python语法简单&#xff0c;学习速度快&#xff0c;大家可以用更短的时间掌握这门语…

Spring学习笔记—JDK动态代理

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; Spring专栏 ✨特色专栏&#xff1a; M…

Unity中Shader的ShaderLOD

文章目录 前言一、ShaderLOD的使用步骤1、ShaderLOD使用在不同的SubShader中&#xff0c;用于区分SubShader所对应的配置2、在 C# 中使用 Shader.globalMaximumLOD 赋值来选择不同的 SubShader,以达到修改配置对应Shader的效果3、在设置LOD时&#xff0c;是需要和程序讨论统一 …

WebGL笔记:矩阵的变换之平移的实现

矩阵的变换 变换 变换有三种状态&#xff1a;平移、旋转、缩放。当我们变换一个图形时&#xff0c;实际上就是在移动这个图形的所有顶点。解释 webgl 要绘图的话&#xff0c;它是先定顶点的&#xff0c;就比如说我要画个三角形&#xff0c;那它会先把这三角形的三个顶点定出来…

为什么需要山洪灾害监测预警系统?

在山洪高发地区&#xff0c;安装山洪灾害监测预警系统能够通过实时监测&#xff0c;预警山洪信息&#xff0c;对于保障我们的生命财产安全具有重要意义。 监测山洪不仅需要对山体进行监测&#xff0c;还要监测降雨量以及水位上升情况。山洪灾害监测预警系统是由GNSS监测站和水…

linux安装node(含npm命令) 并配置淘宝镜像源

1. 下载压缩包 wget https://nodejs.org/dist/v16.14.0/node-v16.14.0-linux-x64.tar.xz # node14 https://nodejs.org/dist/v14.15.4/node-v14.15.4-linux-x64.tar.xz # 推荐将压缩包放置到/usr/local/node文件夹中安装 mv node-v16.14.0-linux-x64.tar.xz /usr/local/node …

LeetCode217——存在重复元素

LeetCode217——存在重复元素 1.题目描述&#xff1a; 给你一个整数数组 nums 。如果任一值在数组中出现 至少两次 &#xff0c;返回 true &#xff1b;如果数组中每个元素互不相同&#xff0c;返回 false 。 2.Result01(暴力解) public static boolean containsDuplicate(in…

SRAM与DRAM的区别

目录 SRAM 特点 应用场景 DRAM 特点 应用场景 SRAM和DRAM的区别 SRAM SRAM&#xff08;静态随机存取存储器&#xff09;是一种用于存储和检索数据的类型的计算机内存。SRAM的存储单元通过触发器&#xff08;flip-flop&#xff09;实现&#xff0c;它们可以保持数据的状态…

语雀崩溃7个小时的原因是什么??

1 语雀是什么 语雀是蚂蚁集团旗下的在线文档编辑与协同工具&#xff0c;使用了“结构化知识库管理”&#xff0c;形式上类似书籍的目录。用户量在千万级别&#xff0c;是非常强大的。身边有不少朋友是付费会员&#xff0c;有许多公司也付费在使用语雀作为知识库进行文档的存储…

通过社工进网站后台的渗透测试

目录 通过社工进网站后台 0X0 开始&#xff1a; 0X1 获取icp备案企业&#xff1a; 0X2 通过备案获取姓名&#xff1a; 0X3 通过姓名获取手机号&#xff1a; 0X4 弱口令进后台&#xff1a; 0X5 总结 通过社工进网站后台 记录一次通过简单社工获取信息后进入后台的经过。…

近似熵的计算

我们计算两个函数,一个是henon,另外一个是TriMap: 代码: 构造henon函数: function [x,y]=Henon(x0,y0,a,b,M) M=M+10000; x = zeros(1,M+1); y = zeros(1,M+1); x(1)=x0; y(1)=y0; for i = 1:Mx(i+1) = 1+y(i)-a*x(i)^2;y(i+1) = b*x(i); endx=x(10001:M); y=y(10001:M)…

【人工智能Ⅰ】实验1:谓词表示法与产生式知识表示

实验1 谓词表示法与产生式知识表示 一、实验目的 1、熟悉谓词逻辑表示法&#xff1b; 2、理解和掌握产生式知识表示方法&#xff0c;实现产生式系统的规则库。 二、实验内容 要求通过C/C/python语言编程实现&#xff1a; 1、猴子摘香蕉问题 2、动物识别系统 &#xff08…

C# 基于腾讯云人脸核身和百度云证件识别技术相结合的 API 实现

目录 腾讯云人脸核身技术 Craneoffice.net 采用的识别方式 1、活体人脸核身(权威库)&#xff1a; 2、活体人脸比对&#xff1a; 3、照片人脸核身(权威库)&#xff1a; 调用成本 百度云身份证识别 调用成本 相关结合点 核心代码 实现调用人脸核身API的示例 实现调用身…