javaEE -8(9000字详解网络编程)

news2024/11/18 15:48:03

一:网络编程基础

1.1 网络资源

所谓的网络资源,其实就是在网络中可以获取的各种数据资源,而所有的网络资源,都是通过网络编程来进行数据传输的。

在这里插入图片描述
用户在浏览器中,打开在线视频网站,如优酷看视频,实质是通过网络,获取到网络上的一个视频资源,与本地打开视频文件类似,只是视频文件这个资源的来源是网络。
在这里插入图片描述
那么我们怎么将这些网络资源在不同的设备上进行传输呢?答案是网络编程

1.2 网络编程

网络编程,指网络上的主机,通过不同的进程,以编程的方式实现网络通信(或称为网络数据传输)。
在这里插入图片描述
当然,我们只要满足进程不同就行;所以即便是同一个主机,只要是不同进程,基于网络来传输数据,也属于网络编程。

特殊的,对于开发来说,在条件有限的情况下,一般也都是在一个主机中运行多个进程来完成网络编程。

但是,我们一定要明确,我们的目的是提供网络上不同主机,基于网络来传输数据资源:

  • 进程A:编程来获取网络资源
  • 进程B:编程来提供网络资源

1.3网络编程中的基本概念

1.3.1 发送端和接收端

在一次网络数据传输时:

  • 发送端:数据的发送方进程,称为发送端。发送端主机即网络通信中的源主机。
  • 接收端:数据的接收方进程,称为接收端。接收端主机即网络通信中的目的主机。
  • 收发端:发送端和接收端两端,也简称为收发端。

注意:发送端和接收端只是相对的,只是一次网络数据传输产生数据流向后的概念。

在这里插入图片描述

1.3.2 请求和响应

一般来说,获取一个网络资源,涉及到两次网络数据传输:

  • 第一次:请求数据的发送
  • 第二次:响应数据的发送。

好比在快餐店点一份炒饭:先要发起请求:点一份炒饭,再有快餐店提供的对应响应:提供一份炒饭

在这里插入图片描述

1.3.3 客户端和服务端

服务端:在常见的网络数据传输场景下,把提供服务的一方进程,称为服务端,可以提供对外服务。

客户端:获取服务的一方进程,称为客户端。

对于服务来说,一般是提供:

  • 客户端获取服务资源
    在这里插入图片描述
  • 客户端保存资源在服务端

在这里插入图片描述

1.3.4 常见的客户端服务端模型

最常见的场景,客户端是指给用户使用的程序,服务端是提供用户服务的程序:

  1. 客户端先发送请求到服务端
  2. 服务端根据请求数据,执行相应的业务处理
  3. 服务端返回响应:发送业务处理结果
  4. 客户端根据响应数据,展示处理结果(展示获取的资源,或提示保存资源的处理结果)

在这里插入图片描述

二:Socket套接字

Socket套接字,是由系统提供用于网络通信的技术,是基于TCP/IP协议的网络通信的基本操作单元。基于Socket套接字的网络程序开发就是网络编程。

Socket套接字主要针对传输层协议划分为如下三类:

  1. 流套接字:使用传输层TCP协议
  2. 数据报套接字:使用传输层UDP协议
  3. 原始套接字

TCP,即Transmission Control Protocol(传输控制协议),传输层协议。

UDP,即User Datagram Protocol(用户数据报协议),传输层协议。

原始套接字用于自定义传输层协议,用于读写内核没有处理的IP协议数据。

2.1 在java中如何一次发送及接收UDP数据报

对于UDP协议来说,具有无连接,面向数据报的特征,即每次都是没有建立连接,并且一次发送全部数据报,一次接收全部的数据报。

java中使用UDP协议通信,主要基于 DatagramSocket 类来创建数据报套接字,并使用DatagramPacket 作为发送或接收的UDP数据报。对于一次发送及接收UDP数据报的流程如下:
在这里插入图片描述
以上只是一次发送端的UDP数据报发送,及接收端的数据报接收,并没有返回的数据。也就是只有请求,没有响应。对于一个服务端来说,重要的是提供多个客户端的请求处理及响应,流程如下:

在这里插入图片描述

2.2 Socket编程注意事项

在这里插入图片描述

在这里插入图片描述

  1. 客户端和服务端:开发时,经常是基于一个主机开启两个进程作为客户端和服务端,但真实的场景,一般都是不同主机。
  2. 注意目的IP和目的端口号,标识了一次数据传输时要发送数据的终点主机和进程
  3. Socket编程我们是使用流套接字和数据报套接字,基于传输层的TCP或UDP协议,但应用层协议,也需要考虑,这块我们在后续来说明如何设计应用层协议。

关于端口被占用的问题:如果一个进程A已经绑定了一个端口,再启动一个进程B绑定该端口,就会报错,这种情况也叫端口被占用。对于java进程来说,端口被占用的常见报错信息如下:

在这里插入图片描述

此时需要检查进程B绑定的是哪个端口,再查看该端口被哪个进程占用。以下为通过端口号查进程的方式:

  • 在cmd输入 netstat -ano | findstr 端口号 ,则可以显示对应进程的pid。如以下命令显示了8888进程的pid
    在这里插入图片描述
  • 在任务管理器中,通过pid查找进程
    在这里插入图片描述
    解决端口被占用的问题:
  • 如果占用端口的进程A不需要运行,就可以关闭A后,再启动需要绑定该端口的进程B
  • 如果需要运行A进程,则可以修改进程B的绑定端口,换为其他没有使用的端口。

三:UDP数据报套接字编程

3.1 DatagramSocket API

DatagramSocket 是UDP Socket,用于发送和接收UDP数据报。

DatagramSocket 构造方法:

方法签名方法说明
DatagramSocket()创建一个UDP数据报套接字的Socket,绑定到本机任意一个随机端口
DatagramSocket(int port)创建一个UDP数据报套接字的Socket,绑定到本机指定的端口

DatagramSocket 方法:

方法签名方法说明
void receive(DatagramPacket p)从此套接字接收数据报(如果没有接收到数据报,该方法会阻塞等待)
void send(DatagramPacket p)从此套接字发送数据报包(不会阻塞等待,直接发送)
void close()关闭此数据报套接字

3.2 DatagramPacket API

DatagramPacket是UDP Socket发送和接收的数据报。

DatagramPacket 构造方法:

方法签名方法说明
DatagramPacket(byte[] buf, int length)构造一个DatagramPacket以用来接收数据报,接收的数据保存在字节数组(第一个参数buf)中,接收指定长度(第二个参数length)
DatagramPacket(byte[] buf, int offset, int length, SocketAddress address)构造一个DatagramPacket以用来发送数据报,发送的数据为字节数组(第一个参数buf)中,从0到指定长度(第二个参数length)。address指定目的主机的IP和端口号

DatagramPacket 方法:

方法签名方法说明
InetAddress.getAddress()从接收的数据报中,获取发送端主机IP地址;或从发送的数据报中,获取接收端主机IP地址
InetAddress.getPort()从接收的数据报中,获取发送端主机的端口号;或从发送的数据报中,获取接收端主机端口号
DatagramPacket.getData()获取数据报中的数据

构造UDP发送的数据报时,需要传入 SocketAddress ,该对象可以使用 InetSocketAddress 来创建。

3.3 InetSocketAddress API

InetSocketAddress ( SocketAddress 的子类 )构造方法:

方法签名方法说明
InetSocketAddress(InetAddress addr, int port)创建一个Socket地址,包含IP地址和端口号

3.4 案例演示

一发一收(无响应)

3.4.1 UDP服务端

package org.example.udp.demo1;
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.util.Arrays;
public class UdpServer {
  //服务器socket要绑定固定的端口
  private static final int PORT = 8888;
  
  public static void main(String[] args) throws IOException {
    // 1.创建服务端DatagramSocket,指定端口,可以发送及接收UDP数据报
    DatagramSocket socket = new DatagramSocket(PORT);
    
    //不停的接收客户端udp数据报
    while (true){
    
      // 2.创建数据报,用于接收客户端发送的数据
      byte[] bytes = new byte[1024];//1m=1024kb, 1kb=1024byte, UDP最多
64k(包含UDP首部8byte)

      DatagramPacket packet = new DatagramPacket(bytes, bytes.length);
      System.out.println("------------------------------------------------
---");
      System.out.println("等待接收UDP数据报...");
      
      // 3.等待接收客户端发送的UDP数据报,该方法在接收到数据报之前会一直阻塞,接收到数据报以后,DatagramPacket对象,包含数据(bytes)和客户端ip、端口号
      socket.receive(packet);
      System.out.printf("客户端IP:%s%n",packet.getAddress().getHostAddress());
      System.out.printf("客户端端口号:%s%n", packet.getPort());
      System.out.printf("客户端发送的原生数据为:%s%n", Arrays.toString(packet.getData()));
      System.out.printf("客户端发送的文本数据为:%s%n", new String(packet.getData()));
   }
 }
}

运行后,服务端就启动了,控制台输出如下:


等待接收UDP数据报…

可以看出,此时代码是阻塞等待在 socket.receive(packet) 代码行,直到接收到一个UDP数据报。

3.4.2 UDP客户端

package org.example.udp.demo1;
import java.io.IOException;
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetSocketAddress;
import java.net.SocketAddress;
public class UdpClient {

  // 服务端socket地址,包含域名或IP,及端口号
  private static final SocketAddress ADDRESS = new
InetSocketAddress("localhost", 8888);
  public static void main(String[] args) throws IOException {
  
    // 4.创建客户端DatagramSocket,开启随机端口就行,可以发送及接收UDP数据报
    DatagramSocket socket = new DatagramSocket();
    
    // 5-1.准备要发送的数据
    byte[] bytes = "hello world!".getBytes();
    
    // 5-2.组装要发送的UDP数据报,包含数据,及发送的服务端信息(服务器IP+端口号)
    DatagramPacket packet = new DatagramPacket(bytes, bytes.length,ADDRESS);

    // 6.发送UDP数据报
    socket.send(packet);
 }
}

客户端启动后会发送一个"hello world!" 的字符串到服务端,在服务端接收后,控制台输出内容如下:


等待接收UDP数据报…
客户端IP:127.0.0.1
客户端端口号:57910
客户端发送的原生数据为:[104, 101, 108, 108, 111, 32, 119, 111, 114, 108, 100, 33,
0, 0, 0, …此处省略很多0]
客户端发送的文本数据为:hello world!


等待接收UDP数据报…

从以上可以看出,发送的UDP数据报(假设发送的数据字节数组长度为M),在接收到以后(假设接收的数据字节数组长度为N):

  1. 如果N>M,则接收的byte[]字节数组中会有很多初始化byte[]的初始值0,转换为字符串就是空白字符;
  2. 如果N<M,则会发生数据部分丢失(可以自己尝试,把接收的字节数组长度指定为比发送的字节数组长度更短)。

要解决以上问题,就需要发送端和接收端双方约定好一致的协议,如规定好结束的标识或整个数据的长度。

四:TCP流套接字编程

4.1 ServerSocket API

ServerSocket 是创建TCP服务端Socket的API。

ServerSocket 构造方法:

方法签名方法说明
ServerSocket(int port)创建一个服务端流套接字Socket,并绑定到指定端口。

ServerSocket 方法:

方法签名方法说明
Socket accept()开始监听指定端口(创建时绑定的端口),有客户端连接后,返回一个服务端Socket对象,并基于该Socket建立与客户端的连接,否则阻塞等待
void close()关闭此套接字

4.2 Socket API

Socket 是客户端Socket,或服务端中接收到客户端建立连接(accept方法)的请求后,返回的服务端Socket。

不管是客户端还是服务端Socket,都是双方建立连接以后,保存的对端信息,及用来与对方收发数据的。

Socket 构造方法:

方法签名方法说明
Socket(String host, int port)创建一个客户端流套接字Socket,并与对应IP的主机上,对应端口的进程建立连接

Socket 方法:

方法签名方法说明
getInetAddress()返回套接字所连接的地址
getInputStream()返回此套接字的输入流
getOutputStream()返回此套接字的输出流

4.3 TCP中的长短连接

TCP发送数据时,需要先建立连接,什么时候关闭连接就决定是短连接还是长连接:

  • 短连接:每次接收到数据并返回响应后,都关闭连接,即是短连接。也就是说,短连接只能一次收发数据。
  • 长连接:不关闭连接,一直保持连接状态,双方不停的收发数据,即是长连接。也就是说,长连接可以多次收发数据。

对比以上长短连接,两者区别如下:

  1. 建立连接、关闭连接的耗时:短连接每次请求、响应都需要建立连接,关闭连接;而长连接只需要第一次建立连接,之后的请求、响应都可以直接传输。相对来说建立连接,关闭连接也是要耗时的,长连接效率更高。

  2. 主动发送请求不同:短连接一般是客户端主动向服务端发送请求;而长连接可以是客户端主动发送请求,也可以是服务端主动发。

  3. 两者的使用场景有不同:短连接适用于客户端请求频率不高的场景,如浏览网页等。长连接适用于客户端与服务端通信频繁的场景,如聊天室,实时游戏等。

扩展了解:
基于BIO(同步阻塞IO)的长连接会一直占用系统资源。对于并发要求很高的服务端系统来说,这样的消耗是不能承受的。

由于每个连接都需要不停的阻塞等待接收数据,所以每个连接都会在一个线程中运行。

一次阻塞等待对应着一次请求、响应,不停处理也就是长连接的特性:一直不关闭连接,不停的处理请求。

实际应用时,服务端一般是基于NIO(即同步非阻塞IO)来实现长连接,性能可以极大的提升。

4.4 案例演示

一发一收(短连接)

以下为一个客户端一次数据发送,和服务端多次数据接收(一次发送一次接收,可以接收多次),即只有客户端请求,但没有服务端响应的示例:

4.4.1 TCP服务端

package org.example.tcp.demo1;
import java.io.*;
import java.net.ServerSocket;
import java.net.Socket;
public class TcpServer {

  //服务器socket要绑定固定的端口
  private static final int PORT = 8888;
  public static void main(String[] args) throws IOException {
  
    // 1.创建一个服务端ServerSocket,用于收发TCP报文
    ServerSocket server = new ServerSocket(PORT);
    
    // 不停的等待客户端连接
    while(true) {
      System.out.println("---------------------------------------------------");
      System.out.println("等待客户端建立TCP连接...");
      
      // 2.等待客户端连接,注意该方法为阻塞方法
      Socket client = server.accept();
      System.out.printf("客户端IP:%s%n",client.getInetAddress().getHostAddress());
      System.out.printf("客户端端口号:%s%n", client.getPort());
      
      // 5.接收客户端的数据,需要从客户端Socket中的输入流获取
      System.out.println("接收到客户端请求:");
      InputStream is = client.getInputStream();
      
      // 为了方便获取字符串内容,可以将以上字节流包装为字符流
      BufferedReader br = new BufferedReader(new InputStreamReader(is,"UTF-8"));
      String line;
      
      // 一直读取到流结束:TCP是基于流的数据传输,一定要客户端关闭Socket输出流才表示服务端接收IO输入流结束
      while ((line = br.readLine()) != null) {
        System.out.println(line);
     }
     
      // 6.双方关闭连接:服务端是关闭客户端socket连接
      client.close();
   }
 }
}

运行后,服务端就启动了,控制台输出如下:


等待客户端建立TCP连接…

可以看出,此时代码是阻塞等待在 server.accept() 代码行,直到有新的客户端申请建立连接。

4.4.2 TCP客户端

package org.example.tcp.demo1;
import java.io.*;
import java.net.Socket;
public class TcpClient {

  //服务端IP或域名
  private static final String SERVER_HOST = "localhost";
  
  //服务端Socket进程的端口号
  private static final int SERVER_PORT = 8888;
  public static void main(String[] args) throws IOException {
  
    // 3.创建一个客户端流套接字Socket,并与对应IP的主机上,对应端口的进程建立连接
    Socket client = new Socket(SERVER_HOST, SERVER_PORT);
    
    // 4.发送TCP数据,是通过socket中的输出流进行发送
    OutputStream os = client.getOutputStream();
    
    // 为了方便输出字符串作为发送的内容,可以将以上字节流包装为字符流
    PrintWriter pw = new PrintWriter(new OutputStreamWriter(os, "UTF-8"));
    
    // 4-1.发送数据:
    pw.println("hello world!");
    
    // 4-2.有缓冲区的IO操作,真正传输数据,需要刷新缓冲区
    pw.flush();
    
    // 7.双方关闭连接:客户端关闭socket连接
    client.close();
 }
}

客户端启动后会发送一个"hello world!" 的字符串到服务端,在服务端接收后,控制台输出内容如下:


等待客户端建立TCP连接…
客户端IP:127.0.0.1
客户端端口号:51118
接收到客户端请求:
hello world!


等待客户端建立TCP连接…

以上客户端与服务端建立的为短连接,每次客户端发送了TCP报文,及服务端接收了TCP报文后,双方都会关闭连接。

五:再谈协议

以上我们实现的UDP和TCP数据传输,除了UDP和TCP协议外,程序还存在应用层自定义协议,可以想想分别都是什么样的协议格式。

对于客户端及服务端应用程序来说,请求和响应,需要约定一致的数据格式:

  • 客户端发送请求和服务端解析请求要使用相同的数据格式。
  • 服务端返回响应和客户端解析响应也要使用相同的数据格式。
  • 请求格式和响应格式可以相同,也可以不同。
  • 约定相同的数据格式,主要目的是为了让接收端在解析的时候明确如何解析数据中的各个字段。
  • 可以使用知名协议(广泛使用的协议格式),如果想自己约定数据格式,就属于自定义协议。

5.1 封装/分用 vs 序列化/反序列化

一般来说,在网络数据传输中,发送端应用程序,发送数据时的数据转换(如java一般就是将对象转换为某种协议格式),即对发送数据时的数据包装动作来说:

  • 如果是使用知名协议,这个动作也称为封装
  • 如果是使用小众协议(包括自定义协议),这个动作也称为序列化,一般是将程序中的对象转换为特定的数据格式。

接收端应用程序,接收数据时的数据转换,即对接收数据时的数据解析动作来说:

  • 如果是使用知名协议,这个动作也称为分用
  • 如果是使用小众协议(包括自定义协议),这个动作也称为反序列化,一般是基于接收数据特定的格式,转换为程序中的对象

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1129185.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

管理类联考——英语二——阅读篇——题材:环保

文章目录 环保2017 年&#xff0c;Text 4——题材&#xff1a;环保-社会细节题-第一步定位&#xff1b;第二步原文复现细节题-推理细节题-人物观点细节题-原因-原词重现&#xff0c;同义替换细节题-人物观点-排除法 2019 年&#xff0c;Text 4——题材&#xff1a;社会-环保细节…

智慧公厕建设方案 - 点击进入

随着城市化进程的不断推进&#xff0c;传统公共厕所的管理问题变得越来越突出。封闭空间、脏乱差的环境以及管理不善所带来的恶臭和卫生问题&#xff0c;成为城市居民心中的痛点。为了解决这一问题&#xff0c;广州中期科技有限公司全新推出了智慧公厕建设方案&#xff0c;以引…

IDEA配置HTML和Thymeleaf热部署开发

IDEA配置HTML和Thymeleaf热部署开发 1.项目配置2. IDEA配置3. 使用 需求&#xff1a;现在我们在开发不分离项目的时候&#xff08;SpringBootThmeleaf&#xff09;经常会改动了类或者静态html文件就需要重启一下服务器&#xff0c; 这样不仅时间开销很大&#xff0c;而且经常重…

云数据库及RDS数据库介绍

1.云数据库概念 云数据库是指被优化或部署到一个虚拟计算环境中的数据库&#xff0c;具有按需付费、按需扩展、高可用性以及存储整合等能力。 2.云数据库特性 云数据库的特性有&#xff1a;实例创建快速、支持只读实例、读写分离、故障自动切换、数据备份、Binlog备份、SQL审…

基于OFDM的通信系统模拟实现

文章目录 前言一、OFDM 基本知识1、OFDM 理论知识及仿真2、OFDM 调制3、OFDM 解调 二、2ASK&#xff08;二进制振幅键控&#xff09;1、2ASK 基本原理①、OOK②、2ASK 2、2ASK/OOK 信号产生方法3、2ASK/OOK 信号解调方法 三、基于 OFDM 的通信系统模拟实现1、整体流程2、MATLAB…

力扣-python-两数相加

题解 1: # Definition for singly-linked list. # class ListNode(object): # def __init__(self, val0, nextNone): # self.val val # self.next nextclass Solution(object):def addTwoNumbers(self, l1, l2):""":type l1: ListNode:t…

数据结构:阶段测试(查漏补缺)

目录 选择题&#xff1a; 题一&#xff1a; 题二&#xff1a; 题三&#xff1a; 题四&#xff1a; 编程题&#xff1a; 题一&#xff1a;左叶子之和 思路一&#xff1a; 题二&#xff1a;约瑟夫问题&#xff08;用单链表实现&#xff09; 思路一&#xff1a; 本人实…

Redis设计与实现(3)字典

Redis的字典使用哈希表作为底层实现&#xff0c;一个哈希表里面可以有多个哈希表节点&#xff0c;而每一个哈希表节点就保存了字典中的一个键值对 redis字典所使用的哈希表由dict.h/dictht typedef struct dictht{//哈希表数组dictEntry **table;//哈希表大小unsigned long si…

【MATLAB源码-第56期】基于WOA白鲸优化算法和PSO粒子群优化算法的三维路径规划对比。

操作环境&#xff1a; MATLAB 2022a 1、算法描述 1.粒子群算法&#xff08;Particle Swarm Optimization&#xff0c;简称PSO&#xff09;是一种模拟鸟群觅食行为的启发式优化方法。以下是其详细描述&#xff1a; 基本思想&#xff1a; 鸟群在寻找食物时&#xff0c;每只鸟都…

Unity游戏开发中打造游戏攻击技能架构与设计

一、技能系统的设计 在 MOBA 游戏中&#xff0c;每个英雄角色都会有多个技能&#xff0c;这些技能可以分为普通攻击和技能攻击两种。普通攻击是英雄角色的基本攻击方式&#xff0c;而技能攻击则需要消耗一定的资源&#xff08;如蓝量&#xff09;才能使用。在设计技能系统时&a…

《数字图像处理》作业一:题目+学习笔记

Hi,学习进步,共同加油💪 1、选择题 (每小题3分,总计24分) (1)下列哪种图像属于数字图像( ) A、电影胶片;B、普通照片;C、手机拍照;D、眼前看到的景物 数字图像是由离散的像素点组成的图像,可以通过数值表示。根据选项,可以排除A(电影胶片)和B(普通…

【力扣刷题】删除链表的倒数第 N 个结点、两两交换链表中的节点、随机链表的复制

&#x1f40c;个人主页&#xff1a; &#x1f40c; 叶落闲庭 &#x1f4a8;我的专栏&#xff1a;&#x1f4a8; c语言 数据结构 javaEE 操作系统 Redis 石可破也&#xff0c;而不可夺坚&#xff1b;丹可磨也&#xff0c;而不可夺赤。 刷题篇 一、删除链表的倒数第 N 个结点1.1 …

一起学数据结构(12)——归并排序的实现

1. 归并排序原理&#xff1a; 归并排序的大概原理如下图所示&#xff1a; 从图中可以看出&#xff0c;归并排序的整体思路就是把已给数组不断分成左右两个区间&#xff0c;当这个区间中的数据数量到达一定数值时&#xff0c;便返回去进行排序&#xff0c;整体的结构类似二叉树…

【Master公式】对于这一类符合的递归可以直接确定时间复杂度

Master公式 T(N) a T(N/b) O(N^d) 对于这一类符合的递归可以直接确定时间复杂度 a,b,c为常数 1、子问题调用了a次 2、子问题的规模一致&#xff0c;N/b指每个子问题处理总规模/b个规模&#xff08;只看规模&#xff0c;常数个忽略&#xff0c;如L,mid,mid1,R&#xff09; 3、…

【Airflow】构建爬虫任务系统

爬虫脚本太多了需要进行管理一下&#xff0c;领导决定使用airflow 我了解了一下这个平台是用来做任务调度。 是一个ETL工具 ETL是将业务系统的数据经过抽取、清洗转换之后加载到数据仓库的过程 这里是一个github的地址 https://github.com/apache/airflow 这里是官方文档 http…

手机桌面待办事项APP推荐

每天&#xff0c;我们每个人都面临着繁琐的事务和任务&#xff0c;而手机成了我们日常生活中不可或缺的伙伴。手机上的待办事项工具像一个可靠的助手&#xff0c;可以帮助我们更好地记录、管理和完成任务。在手机桌面上使用的待办事项APP推荐用哪一个呢&#xff1f; 手机是我们…

【QT】信号和槽

一、前置示例代码 main.cpp #include "widget.h"#include <QApplication>int main(int argc, char *argv[]) {QApplication a(argc, argv); // 应用程序对象a&#xff0c;在Qt中&#xff0c;应用程序对象&#xff0c;有且仅有一个。Widget w; // 窗口对…

python sqlalchemy(ORM)- 02 表关系

文章目录 表关系ORM表示 1v1ORM表示 1vm 表关系 1:1&#xff0c;表A 中的一条记录&#xff0c;仅对应表B中的一条记录&#xff1b;表B的一条记录&#xff0c;仅对应表A的一条记录。1:m&#xff0c;表A中的一条记录&#xff0c;对应表B中的多条记录&#xff0c;表B中的一条记录…

编译原理-词法分析器

文章目录 对于词法分析器的要求概念词法分析器的功能和输出形式 词法分析器的设计词法分析器的结构单词符号的识别&#xff1a;超前搜索状态转换图 正规表达式和有限自动机正规式和正规集确定有限自动机&#xff08;DFA&#xff09;非确定有限自动机&#xff08;NFA&#xff09…

多级缓存入门

文章目录 什么是多级缓存JVM进程缓存环境准备安装MySQL导入Demo工程导入商品查询页面 初识Caffeine Lua语法初识Lua第一个lua程序变量和循环Lua的数据类型声明变量循环 条件控制、函数函数条件控制 多级缓存安装OpenRestyOpenResty快速入门反向代理流程OpenResty监听请求编写it…