Prometheus接入AlterManager配置邮件告警(基于K8S环境部署)

news2024/11/17 15:44:27

文章目录

    • 一、配置AlterManager告警发送至邮箱
    • 二、Prometheus接入AlterManager配置
    • 三、部署Prometheus+AlterManager(放到一个Pod中)
    • 四、测试告警

注意:请基于 Prometheus+Grafana监控K8S集群(基于K8S环境部署)文章之上做本次实验。

一、配置AlterManager告警发送至邮箱

1、创建AlterManager ConfigMap资源清单

vim alertmanager-cm.yaml
---
kind: ConfigMap
apiVersion: v1
metadata:
  name: alertmanager
  namespace: prometheus
data:
  alertmanager.yml: |-
    global:  
      resolve_timeout: 1m
      smtp_smarthost: 'smtp.qq.com:25'
      smtp_from: '1507341994@qq.com'  # 从这个邮箱发送告警
      smtp_auth_username: '1507341994@qq.com'  # 发送告警邮箱账号
      smtp_auth_password: 'eptesvmdjfpcbaab'   # 邮箱验证码,用自己的别用我的!!
      smtp_require_tls: false
    route:   # 路由配置(将邮箱发送那个路由)
      group_by: [alertname]
      group_wait: 10s
      group_interval: 10s
      repeat_interval: 10m
      receiver: default-receiver   # 告警发送到default-receiver接受者
    receivers:
    - name: 'default-receiver'     # 定义default-receiver接受者
      email_configs:
      - to: '1507341994@qq.com'   # 告警发送邮箱地址
        send_resolved: true

执行YAML资源清单:

kubectl apply -f alertmanager-cm.yaml

2、配置文件核心配置说明

  • group_by: [alertname]:采用哪个标签来作为分组依据。
  • group_wait:10s:组告警等待时间。就是告警产生后等待10s,如果有同组告警一起发出。
  • group_interval: 10s :上下两组发送告警的间隔时间。
  • repeat_interval: 10m:重复发送告警的时间,减少相同邮件的发送频率,默认是1h。
  • receiver: default-receiver:定义谁来收告警。
  • smtp_smarthost: SMTP服务器地址+端口。
  • smtp_from:指定从哪个邮箱发送报警。
  • smtp_auth_username:邮箱账号。
  • smtp_auth_password: 邮箱密码(授权码)。

二、Prometheus接入AlterManager配置

1、创建新的Prometheus ConfigMap资源清单,添加监控K8S集群告警规则

vim prometheus-alertmanager-cfg.yaml
---
kind: ConfigMap
apiVersion: v1
metadata:
  labels:
    app: prometheus
  name: prometheus-config
  namespace: prometheus
data:
  prometheus.yml: |
    rule_files: 
    - /etc/prometheus/rules.yml   # 告警规则位置
    alerting:
      alertmanagers:
      - static_configs:
        - targets: ["localhost:9093"] # 接入AlterManager
    global:
      scrape_interval: 15s
      scrape_timeout: 10s
      evaluation_interval: 1m
    scrape_configs:
    - job_name: 'kubernetes-node'
      kubernetes_sd_configs:
      - role: node
      relabel_configs:
      - source_labels: [__address__]
        regex: '(.*):10250'
        replacement: '${1}:9100'
        target_label: __address__
        action: replace
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
    - job_name: 'kubernetes-node-cadvisor'
      kubernetes_sd_configs:
      - role:  node
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - action: labelmap
        regex: __meta_kubernetes_node_label_(.+)
      - target_label: __address__
        replacement: kubernetes.default.svc:443
      - source_labels: [__meta_kubernetes_node_name]
        regex: (.+)
        target_label: __metrics_path__
        replacement: /api/v1/nodes/${1}/proxy/metrics/cadvisor
    - job_name: 'kubernetes-apiserver'
      kubernetes_sd_configs:
      - role: endpoints
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/serviceaccount/ca.crt
      bearer_token_file: /var/run/secrets/kubernetes.io/serviceaccount/token
      relabel_configs:
      - source_labels: [__meta_kubernetes_namespace, __meta_kubernetes_service_name, __meta_kubernetes_endpoint_port_name]
        action: keep
        regex: default;kubernetes;https
    - job_name: 'kubernetes-service-endpoints'
      kubernetes_sd_configs:
      - role: endpoints
      relabel_configs:
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scrape]
        action: keep
        regex: true
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_scheme]
        action: replace
        target_label: __scheme__
        regex: (https?)
      - source_labels: [__meta_kubernetes_service_annotation_prometheus_io_path]
        action: replace
        target_label: __metrics_path__
        regex: (.+)
      - source_labels: [__address__, __meta_kubernetes_service_annotation_prometheus_io_port]
        action: replace
        target_label: __address__
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
      - action: labelmap
        regex: __meta_kubernetes_service_label_(.+)
      - source_labels: [__meta_kubernetes_namespace]
        action: replace
        target_label: kubernetes_namespace
      - source_labels: [__meta_kubernetes_service_name]
        action: replace
        target_label: kubernetes_name 
    - job_name: 'kubernetes-pods'    # 监控Pod配置,添加注解后才可以被发现
      kubernetes_sd_configs:
      - role: pod
      relabel_configs:
      - action: keep
        regex: true
        source_labels:
        - __meta_kubernetes_pod_annotation_prometheus_io_scrape
      - action: replace
        regex: (.+)
        source_labels:
        - __meta_kubernetes_pod_annotation_prometheus_io_path
        target_label: __metrics_path__
      - action: replace
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
        source_labels:
        - __address__
        - __meta_kubernetes_pod_annotation_prometheus_io_port
        target_label: __address__
      - action: labelmap
        regex: __meta_kubernetes_pod_label_(.+)
      - action: replace
        source_labels:
        - __meta_kubernetes_namespace
        target_label: kubernetes_namespace
      - action: replace
        source_labels:
        - __meta_kubernetes_pod_name
        target_label: kubernetes_pod_name
    - job_name: 'kubernetes-etcd'   # 监控etcd配置
      scheme: https
      tls_config:
        ca_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/ca.crt
        cert_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.crt
        key_file: /var/run/secrets/kubernetes.io/k8s-certs/etcd/server.key
      scrape_interval: 5s
      static_configs:
      - targets: ['16.32.15.200:2379']
  rules.yml: |  # K8S集群告警规则配置文件
    groups:
    - name: example
      rules:
      - alert: apiserver的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  apiserver的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-apiserver"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: etcd的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过80%"
      - alert:  etcd的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{job=~"kubernetes-etcd"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}组件的cpu使用率超过90%"
      - alert: kube-state-metrics的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
          value: "{{ $value }}%"
          threshold: "80%"      
      - alert: kube-state-metrics的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-state-metrics"}[1m]) * 100 > 0
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
          value: "{{ $value }}%"
          threshold: "90%"      
      - alert: coredns的cpu使用率大于80%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 80
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过80%"
          value: "{{ $value }}%"
          threshold: "80%"      
      - alert: coredns的cpu使用率大于90%
        expr: rate(process_cpu_seconds_total{k8s_app=~"kube-dns"}[1m]) * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.k8s_app}}组件的cpu使用率超过90%"
          value: "{{ $value }}%"
          threshold: "90%"      
      - alert: kube-proxy打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kube-proxy打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-kube-proxy"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-schedule打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-schedule"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-schedule打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-schedule"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-controller-manager打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-controller-manager打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-controller-manager"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-apiserver打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-apiserver"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-apiserver打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-apiserver"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: kubernetes-etcd打开句柄数>600
        expr: process_open_fds{job=~"kubernetes-etcd"}  > 600
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>600"
          value: "{{ $value }}"
      - alert: kubernetes-etcd打开句柄数>1000
        expr: process_open_fds{job=~"kubernetes-etcd"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "{{$labels.instance}}的{{$labels.job}}打开句柄数>1000"
          value: "{{ $value }}"
      - alert: coredns
        expr: process_open_fds{k8s_app=~"kube-dns"}  > 600
        for: 2s
        labels:
          severity: warnning 
        annotations:
          description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过600"
          value: "{{ $value }}"
      - alert: coredns
        expr: process_open_fds{k8s_app=~"kube-dns"}  > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 打开句柄数超过1000"
          value: "{{ $value }}"
      - alert: kube-proxy
        expr: process_virtual_memory_bytes{job=~"kubernetes-kube-proxy"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: scheduler
        expr: process_virtual_memory_bytes{job=~"kubernetes-schedule"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kubernetes-controller-manager
        expr: process_virtual_memory_bytes{job=~"kubernetes-controller-manager"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kubernetes-apiserver
        expr: process_virtual_memory_bytes{job=~"kubernetes-apiserver"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kubernetes-etcd
        expr: process_virtual_memory_bytes{job=~"kubernetes-etcd"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: kube-dns
        expr: process_virtual_memory_bytes{k8s_app=~"kube-dns"}  > 2000000000
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "插件{{$labels.k8s_app}}({{$labels.instance}}): 使用虚拟内存超过2G"
          value: "{{ $value }}"
      - alert: HttpRequestsAvg
        expr: sum(rate(rest_client_requests_total{job=~"kubernetes-kube-proxy|kubernetes-kubelet|kubernetes-schedule|kubernetes-control-manager|kubernetes-apiservers"}[1m]))  > 1000
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): TPS超过1000"
          value: "{{ $value }}"
          threshold: "1000"   
      - alert: Pod_restarts
        expr: kube_pod_container_status_restarts_total{namespace=~"kube-system|default|monitor-sa"} > 0
        for: 2s
        labels:
          severity: warnning
        annotations:
          description: "在{{$labels.namespace}}名称空间下发现{{$labels.pod}}这个pod下的容器{{$labels.container}}被重启,这个监控指标是由{{$labels.instance}}采集的"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Pod_waiting
        expr: kube_pod_container_status_waiting_reason{namespace=~"kube-system|default"} == 1
        for: 2s
        labels:
          team: admin
        annotations:
          description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}启动异常等待中"
          value: "{{ $value }}"
          threshold: "1"   
      - alert: Pod_terminated
        expr: kube_pod_container_status_terminated_reason{namespace=~"kube-system|default|monitor-sa"} == 1
        for: 2s
        labels:
          team: admin
        annotations:
          description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.pod}}下的{{$labels.container}}被删除"
          value: "{{ $value }}"
          threshold: "1"
      - alert: Etcd_leader
        expr: etcd_server_has_leader{job="kubernetes-etcd"} == 0
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 当前没有leader"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Etcd_leader_changes
        expr: rate(etcd_server_leader_changes_seen_total{job="kubernetes-etcd"}[1m]) > 0
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 当前leader已发生改变"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Etcd_failed
        expr: rate(etcd_server_proposals_failed_total{job="kubernetes-etcd"}[1m]) > 0
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}): 服务失败"
          value: "{{ $value }}"
          threshold: "0"
      - alert: Etcd_db_total_size
        expr: etcd_debugging_mvcc_db_total_size_in_bytes{job="kubernetes-etcd"} > 10000000000
        for: 2s
        labels:
          team: admin
        annotations:
          description: "组件{{$labels.job}}({{$labels.instance}}):db空间超过10G"
          value: "{{ $value }}"
          threshold: "10G"
      - alert: Endpoint_ready
        expr: kube_endpoint_address_not_ready{namespace=~"kube-system|default"} == 1
        for: 2s
        labels:
          team: admin
        annotations:
          description: "空间{{$labels.namespace}}({{$labels.instance}}): 发现{{$labels.endpoint}}不可用"
          value: "{{ $value }}"
          threshold: "1"
    - name: 物理节点状态-监控告警
      rules:
      - alert: 物理节点cpu使用率
        expr: 100-avg(irate(node_cpu_seconds_total{mode="idle"}[5m])) by(instance)*100 > 90
        for: 2s
        labels:
          severity: ccritical
        annotations:
          summary: "{{ $labels.instance }}cpu使用率过高"
          description: "{{ $labels.instance }}的cpu使用率超过90%,当前使用率[{{ $value }}],需要排查处理" 
      - alert: 物理节点内存使用率
        expr: (node_memory_MemTotal_bytes - (node_memory_MemFree_bytes + node_memory_Buffers_bytes + node_memory_Cached_bytes)) / node_memory_MemTotal_bytes * 100 > 90
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{ $labels.instance }}内存使用率过高"
          description: "{{ $labels.instance }}的内存使用率超过90%,当前使用率[{{ $value }}],需要排查处理"
      - alert: InstanceDown
        expr: up == 0
        for: 2s
        labels:
          severity: critical
        annotations:   
          summary: "{{ $labels.instance }}: 服务器宕机"
          description: "{{ $labels.instance }}: 服务器延时超过2分钟"
      - alert: 物理节点磁盘的IO性能
        expr: 100-(avg(irate(node_disk_io_time_seconds_total[1m])) by(instance)* 100) < 60
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 流入磁盘IO使用率过高!"
          description: "{{$labels.mountpoint }} 流入磁盘IO大于60%(目前使用:{{$value}})"
      - alert: 入网流量带宽
        expr: ((sum(rate (node_network_receive_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 流入网络带宽过高!"
          description: "{{$labels.mountpoint }}流入网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
      - alert: 出网流量带宽
        expr: ((sum(rate (node_network_transmit_bytes_total{device!~'tap.*|veth.*|br.*|docker.*|virbr*|lo*'}[5m])) by (instance)) / 100) > 102400
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 流出网络带宽过高!"
          description: "{{$labels.mountpoint }}流出网络带宽持续5分钟高于100M. RX带宽使用率{{$value}}"
      - alert: TCP会话
        expr: node_netstat_Tcp_CurrEstab > 1000
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} TCP_ESTABLISHED过高!"
          description: "{{$labels.mountpoint }} TCP_ESTABLISHED大于1000%(目前使用:{{$value}}%)"
      - alert: 磁盘容量
        expr: 100-(node_filesystem_free_bytes{fstype=~"ext4|xfs"}/node_filesystem_size_bytes {fstype=~"ext4|xfs"}*100) > 80
        for: 2s
        labels:
          severity: critical
        annotations:
          summary: "{{$labels.mountpoint}} 磁盘分区使用率过高!"
          description: "{{$labels.mountpoint }} 磁盘分区使用大于80%(目前使用:{{$value}}%)"

执行资源清单:

kubectl apply -f prometheus-alertmanager-cfg.yaml

2、由于在prometheus中新增了etcd,所以生成一个etcd-certs,这个在部署prometheus需要

kubectl -n prometheus create secret generic etcd-certs --from-file=/etc/kubernetes/pki/etcd/server.key  --from-file=/etc/kubernetes/pki/etcd/server.crt --from-file=/etc/kubernetes/pki/etcd/ca.crt

三、部署Prometheus+AlterManager(放到一个Pod中)

1、在node-1节点创建/data/alertmanager目录,存放alertmanager数据

mkdir /data/alertmanager -p
chmod -R 777 alertmanager

2、创建deployment资源

vim prometheus-alertmanager-deploy.yaml
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: prometheus-server
  namespace: prometheus
  labels:
    app: prometheus
spec:
  replicas: 1
  selector:
    matchLabels:
      app: prometheus
      component: server
    #matchExpressions:
    #- {key: app, operator: In, values: [prometheus]}
    #- {key: component, operator: In, values: [server]}
  template:
    metadata:
      labels:
        app: prometheus
        component: server
      annotations:
        prometheus.io/scrape: 'false'
    spec:
      nodeName: node-1 # 调度到node-1节点
      serviceAccountName: prometheus # 指定sa服务账号
      containers:
      - name: prometheus
        image: prom/prometheus:v2.33.5
        imagePullPolicy: IfNotPresent
        command:
        - "/bin/prometheus"
        args:
        - "--config.file=/etc/prometheus/prometheus.yml"
        - "--storage.tsdb.path=/prometheus"
        - "--storage.tsdb.retention=24h"
        - "--web.enable-lifecycle"
        ports:
        - containerPort: 9090
          protocol: TCP
        volumeMounts:
        - mountPath: /etc/prometheus
          name: prometheus-config
        - mountPath: /prometheus/
          name: prometheus-storage-volume
        - name: k8s-certs
          mountPath: /var/run/secrets/kubernetes.io/k8s-certs/etcd/
      - name: alertmanager
        #image: prom/alertmanager:v0.14.0
        image: prom/alertmanager:v0.23.0
        imagePullPolicy: IfNotPresent
        args:
        - "--config.file=/etc/alertmanager/alertmanager.yml"
        - "--log.level=debug"
        ports:
        - containerPort: 9093
          protocol: TCP
          name: alertmanager
        volumeMounts:
        - name: alertmanager-config
          mountPath: /etc/alertmanager
        - name: alertmanager-storage
          mountPath: /alertmanager
        - name: localtime
          mountPath: /etc/localtime
      volumes:
        - name: prometheus-config
          configMap:
            name: prometheus-config
        - name: prometheus-storage-volume
          hostPath:
           path: /data
           type: Directory
        - name: k8s-certs
          secret:
           secretName: etcd-certs
        - name: alertmanager-config
          configMap:
            name: alertmanager
        - name: alertmanager-storage
          hostPath:
           path: /data/alertmanager
           type: DirectoryOrCreate
        - name: localtime
          hostPath:
           path: /usr/share/zoneinfo/Asia/Shanghai

执行YAML资源清单:

kubectl apply -f prometheus-alertmanager-deploy.yaml

查看状态:

kubectl get pods -n prometheus

在这里插入图片描述

2、创建AlterManager SVC资源

vim alertmanager-svc.yaml 
---
apiVersion: v1
kind: Service
metadata:
  labels:
    name: prometheus
    kubernetes.io/cluster-service: 'true'
  name: alertmanager
  namespace: prometheus
spec:
  ports:
  - name: alertmanager
    nodePort: 30066
    port: 9093
    protocol: TCP
    targetPort: 9093
  selector:
    app: prometheus
  sessionAffinity: None
  type: NodePort

执行YAML资源清单:

kubectl apply -f alertmanager-svc.yaml 

查看状态:

kubectl get svc -n prometheus

在这里插入图片描述

四、测试告警

浏览器访问:http://IP:30066
在这里插入图片描述
如上图可以看到,Prometheus的告警信息已经发到AlterManager了,AlertManager收到报警数据后,会将警报信息进行分组,然后根据AlertManager配置的 group_wait 时间先进行等待。等wait时间过后再发送报警信息至邮件!

如上图,告警信息已经成功发往邮件了!!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1121302.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

手把手入门Node框架Egg.js

0.介绍 Egg.js 是一个面向企业级应用开发的 Node.js 框架&#xff0c;它建立在 Koa.js 之上&#xff0c;提供了一种更简单、灵活的开发方式。Egg.js 提供了一些默认约定和最佳实践&#xff0c;可以帮助开发者快速构建可靠、可扩展的应用程序。 基于 Koa.js&#xff1a;Egg.js …

spacy.load(“en_core_web_trf“)报错TypeError: issubclass() arg 1 must be a class

使用spacy时遇到的问题 写在最前面&#xff1a; 安装spacy和en_core_web_trf时需要保证二者版本一致 安装及查看对应spacy版本 安装 pip install spacy查看版本 import spacy spacy.__version__安装en_core_web_trf 直接安装&#xff08;如果可以的话&#xff09; pytho…

【论文阅读】以及部署BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework

BEVFusion: A Simple and Robust LiDAR-Camera Fusion Framework BEVFusion&#xff1a;一个简单而强大的LiDAR-相机融合框架 NeurIPS 2022 多模态传感器融合意味着信息互补、稳定&#xff0c;是自动驾驶感知的重要一环&#xff0c;本文注重工业落地&#xff0c;实际应用 融…

反转链表review

反转链表 /*** Definition for singly-linked list.* public class ListNode {* int val;* ListNode next;* ListNode() {}* ListNode(int val) { this.val val; }* ListNode(int val, ListNode next) { this.val val; this.next next; }* }*/ class …

Rust逆向学习 (2)

文章目录 Guess a number0x01. Guess a number .part 1line 1loopline 3~7match 0x02. Reverse for enum0x03. Reverse for Tuple0x04. Guess a number .part 20x05. 总结 在上一篇文章中&#xff0c;我们比较完美地完成了第一次Rust ELF的逆向工作&#xff0c;但第一次编写的R…

JVM(Java Virtual Machine)垃圾收集器篇

前言 本文参考《深入理解Java虚拟机》一书&#xff0c;本文主要介绍几个经典的垃圾收集器&#xff1a;Serial、ParNew、parallelScavenge、CMS、Serial Old、Parallel Old、G1 本系列其他文章链接&#xff1a; JVM&#xff08;Java Virtual Machine&#xff09;内存模型篇 JV…

2434: 【区赛】[慈溪2013]统计方格

题目描述 给出一张 n 行 m 列仅由黑白方格组成的黑白图片&#xff08;行从上到下 1 到 n 编号&#xff0c;列从左到右 1 到 m 编号&#xff09;。如下图是一张由 17 行 18 列方格构成的黑白图片&#xff0c;图片中的任意一个方格要么是白色&#xff0c;要么是黑色。 仔细观察这…

介绍Sigmoid函数的平移、平滑和翻转【基于Python可视化分析】

文章目录 简介Sigmoid函数Sigmoid函数曲线调控参数设置python可视化参考 简介 本篇博客介绍了具有S型曲线的Sigmoid函数&#xff0c;以及如何设置、调整Sigmoid函数的参数实现S曲线的平滑、平移和翻转操作。博客给出了Python代码示例&#xff0c;更加深刻形象。&#x1f606;&…

hdlbits系列verilog解答(两输入与门)-06

文章目录 wire线网类型介绍一、问题描述二、verilog源码三、仿真结果 wire线网类型介绍 wire线网类型是verilog的一种数据类型&#xff0c;它是一种单向的物理连线。它可以是输入也可以是输出&#xff0c;它与reg寄存器数据类型不同&#xff0c;它不能存储数据&#xff0c;只能…

数据结构与算法 | 第二章:线性表

本文参考网课为 数据结构与算法 1 第二章线性表&#xff0c;主讲人 张铭 、王腾蛟 、赵海燕 、宋国杰 、邹磊 、黄群。 本文使用IDE为 Clion&#xff0c;开发环境 C14。 更新&#xff1a;2023 / 10 / 22 数据结构与算法 | 第二章&#xff1a;线性表 线性表总览线性结构概念特…

大数据技术学习笔记(三)—— Hadoop 的运行模式

目录 1 本地模式2 伪分布式模式3 完全分布式模式3.1 准备3台客户机3.2 同步分发内容3.2.1 分发命令3.2.2 执行分发操作 3.3 集群配置3.3.1 集群部署规划3.3.2 配置文件说明3.3.3 修改配置文件3.3.4 分发配置信息 3.4 SSH无密登录配置3.4.1 配置ssh3.4.2 无密钥配置 3.5 单点启动…

人工智能(6):机器学习基础环境安装与使用

1 库的安装 整个机器学习基础阶段会用到Matplotlib、Numpy、Pandas等库&#xff0c;为了统一版本号在环境中使用&#xff0c;将所有的库及其版本放到了文件requirements.txt当中&#xff0c;然后统一安装 新建一个用于人工智能环境的虚拟环境 mkvirtualenv ai matplotlib3.8…

Mybatis应用场景之动态传参、两字段查询、用户存在性的判断

目录 一、动态传参 1、场景描述 2、实现过程 3、代码测试 二、两字段查询 1、场景描述 2、实现过程 3、代码测试 4、注意点 三、用户存在性的判断 1、场景描述 2、实现过程 3、代码测试 一、动态传参 1、场景描述 在进行数据库查询的时候&#xff0c;需要动态传入…

【源码解析】Spring源码解读-bean的加载

Spring的整体流程其实就是通过配置 xml、注解将自定义bean类信息进行配置&#xff0c;然后通过BeanDefinitionReader读取配置信息&#xff0c;由Dom转换成xml解析成Docment。在通过加载的配置信息进行初始化Bean对象&#xff0c;然后在对象的前后进行处理&#xff0c;也就是不同…

2023-10-22

一、总线通信协议简介 总线是计算机系统中负责连接各个硬件的通信线路&#xff0c;它可以传输数据、地址和控制信号。通信协议是指双方实体完成通信所遵循的规则。总线通信协议是一种规定总线设备之间数据通信方式和方法的规则&#xff0c;它包括数据的通信方式、速率、格式、…

python爬虫之js逆向入门:常用加密算法的逆向和实践

一、强大的Chrome DevTools Chrome DevTools是一组内置于Google Chrome浏览器中的开发者工具&#xff0c;用于帮助开发人员调试、分析和优化Web应用程序。它提供了一系列功能强大的工具&#xff0c;用于检查和编辑HTML、CSS和JavaScript代码&#xff0c;监视网络请求、性能分析…

redis怎么设计一个高性能hash表

问题 redis 怎么解决的hash冲突问题 &#xff1f;redis 对于扩容rehash有什么优秀的设计&#xff1f; hash 目标是解决hash冲突&#xff0c;那什么是hash冲突呢&#xff1f; 实际上&#xff0c;一个最简单的 Hash 表就是一个数组&#xff0c;数组里的每个元素是一个哈希桶&…

ida81输入密码验证算法分析以及破解思路

本文分析了ida81对输入密码的验证流程&#xff0c;分别对输入密码到生成解密密钥、密码素材的生成过程以及文件数据的加密过程这三个流程进行分析&#xff0c;并尝试找一些可利用的破绽。很遗憾&#xff0c;由于水平有限&#xff0c;目前也只是有个思路未能完全实现&#xff0c…

查看当前cmake版本支持哪些版本的Visual Studio

不同版本的的cmake对Visual Studio的版本支持不同&#xff0c;以下图示展示了如何查看当前安装的cmake支持哪些版本的Visual Studio。 1.打开cmake-gui 2.查看cmake支持哪些版本的Visual Studio

28. 使用 k8e 玩转 kube-vip with Cilium‘s Egress Gateway 特性

因为在私有云环境下,我们需要保障集群服务 APIServer地址的高可用,所以提供的方案就是使用一个 VIP 让 API Server 的流量可以负载均衡的流入集群。另外,kube-vip 还支持 Service LB,方便SVC 服务的负载均衡,结合 cilium Egress Gateway 特性可以做到集群内的容器对外访问…