【JavaEE】JUC 常见的类 -- 多线程篇(8)

news2024/11/16 21:33:29

JUC 常见的类

  • 1. Callable 接口
  • 2. ReentrantLock
  • 3. 原子类
  • 4. 线程池
  • 5. 信号量 Semaphore
  • 6. CountDownLatch

1. Callable 接口

  • Callable Interface 也是一种创建线程的方式
    • Runnable 能表示一个任务 (run方法) – 返回 void
    • Callable 也能表示一个任务(call方法) 返回一个具体的的值, 类型可以通过泛型参数来指定(Object)

代码示例: 创建线程计算 1 + 2 + 3 + … + 1000, 不使用 Callable 版本

  • 创建一个类 Result , 包含一个 sum 表示最终结果, lock 表示线程同步使用的锁对象.
  • main 方法中先创建 Result 实例, 然后创建一个线程 t. 在线程内部计算 1 + 2 + 3 + … + 1000.
  • 主线程同时使用 wait 等待线程 t 计算结束. (注意, 如果执行到 wait 之前, 线程 t 已经计算完了, 就不必等待了).
  • 当线程 t 计算完毕后, 通过 notify 唤醒主线程, 主线程再打印结果.
static class Result {
    public int sum = 0;
    public Object lock = new Object();
}
public static void main(String[] args) throws InterruptedException {
    Result result = new Result();
    Thread t = new Thread() {
        @Override
        public void run() {
            int sum = 0;
            for (int i = 1; i <= 1000; i++) {
                sum += i;
           }
            synchronized (result.lock) {
                result.sum = sum;
                result.lock.notify();
           }
       }
   };
    t.start();
    synchronized (result.lock) {
        while (result.sum == 0) {
            result.lock.wait();
       }
        System.out.println(result.sum);
   }
}

可以看到, 上述代码需要一个辅助类 Result, 还需要使用一系列的加锁和 wait notify 操作, 代码复杂, 容易出错.


代码示例: 创建线程计算 1 + 2 + 3 + … + 1000, 使用 Callable 版本

  • 创建一个匿名内部类, 实现 Callable 接口. Callable 带有泛型参数. 泛型参数表示返回值的类型.
  • 重写 Callable 的 call 方法, 完成累加的过程. 直接通过返回值返回计算结果.
  • 把 callable 实例使用 FutureTask 包装一下.
  • 创建线程, 线程的构造方法传入 FutureTask . 此时新线程就会执行 FutureTask 内部的 Callable 的call 方法, 完成计算. 计算结果就放到了 FutureTask 对象中.
  • 在主线程中调用 futureTask.get() 能够阻塞等待新线程计算完毕. 并获取到 FutureTask 中的结果.
// 使用 Callable 版本实现 1 累加到 100
public static void main(String[] args) throws ExecutionException, InterruptedException {
    // 1. 创建实现Callable接口的匿名内部类
    Callable<Integer> callable = new Callable<Integer>() {
        @Override
        public Integer call() throws Exception {
            int sum = 0;
            for (int i = 1; i <= 100; i++) {
                sum += i;
            }
            return sum;
        }
    };
    // 2. 创建futureTask类 -- 要来存储callable的返回值
    FutureTask<Integer> futureTask = new FutureTask<>(callable);
    Thread t = new Thread(futureTask);
    t.start();
    // 3. 调用futureTask的get方法 -- 该方法是阻塞等待的
    Integer result = futureTask.get();
    System.out.println(result);
}
  • 可以看到, 使用 Callable 和 FutureTask 之后, 代码简化了很多, 也不必手动写线程同步代码了.

理解Callable

  • Callable 和 Runnable 相对, 都是描述一个 “任务”. Callable 描述的是带有返回值的任务, Runnable 描述的是不带返回值的任务.
  • Callable 通常需要搭配 FutureTask 来使用. FutureTask 用来保存 Callable 的返回结果. 因为Callable 往往是在另一个线程中执行的, 啥时候执行完并不确定.
  • FutureTask 就可以负责这个等待结果出来的工作.

2. ReentrantLock

可重入互斥锁. 和 synchronized 定位类似, 都是用来实现互斥效果, 保证线程安全.

ReentrantLock 的用法:

  • lock(): 加锁, 如果获取不到锁就死等.
  • trylock(超时时间): 加锁, 如果获取不到锁, 等待一定的时间之后就放弃加锁.
  • unlock(): 解锁

在这里插入图片描述

ReentrantLock 和 synchronized 的区别:

  • synchronized 是一个关键字, 是 JVM 内部实现的(大概率是基于 C++ 实现). ReentrantLock 是标准库的一个类, 在 JVM 外实现的(基于 Java 实现).
  • synchronized 使用时不需要手动释放锁. ReentrantLock 使用时需要手动释放. 使用起来更灵活, 但是也容易遗漏 unlock.
  • synchronized 在申请锁失败时, 会死等. ReentrantLock 可以通过 trylock 的方式等待一段时间就放弃.
  • synchronized 是非公平锁, ReentrantLock 默认是非公平锁. 可以通过构造方法传入一个 true 开启公平锁模式.在这里插入图片描述
  • 更强大的唤醒机制. synchronized 是通过 Object 的 wait / notify 实现等待-唤醒. 每次唤醒的是一个随机等待的线程. ReentrantLock 搭配 Condition 类实现等待-唤醒, 可以更精确控制唤醒某个指定的线程.

如何选择使用哪个锁?

  • 锁竞争不激烈的时候, 使用 synchronized, 效率更高, 自动释放更方便.
  • 锁竞争激烈的时候, 使用 ReentrantLock, 搭配 trylock 更灵活控制加锁的行为, 而不是死等.
  • 如果需要使用公平锁, 使用 ReentrantLock.

3. 原子类

使用示例

在这里插入图片描述

原子类的应用场景

  1. 计数需求
    • 播放量, 点赞量…
    • 同一个视频, 有很多人都在同时的播放/点赞
  2. 统计效果
    • 统计出现错误的请求数目 – 使用原子类, 记录出错的请求数目 – 另外写一个监控服务器, 获取线上服务器的这些错误技术, 并且以曲线图的方式绘制到页面上 – 某次发布程序之后, 发现突然这里的错误数大幅度上升, 说明你这个版本代码大概率存在 bug
    • 统计收到请求的总数 (衡量服务器的压力)
    • 统计每个请求的响应事件 -> 平均的响应事件 (衡量服务器的运行效率)
    • 线上服务通过这些统计内容, 进行简单技术 -> 实现监控服务器

4. 线程池

  • 之前的文章里已经讲过了, 请跳转: 线程池

在这里插入图片描述

5. 信号量 Semaphore

信号量的概念

  • 信号量, 用来表示 “可用资源的个数”. 本质上就是一个计数器.

在这里插入图片描述

Semaphore 使用示例

public static void main(String[] args) throws InterruptedException {
    Semaphore semaphore = new Semaphore(4);
    int count = 0;
    // acquire方法 -- P操作 -- 计数器减一
    semaphore.acquire();
    System.out.println(count++);
    // release方法 -- V操作 -- 计数器加一
    semaphore.release();
    semaphore.acquire();
    System.out.println(count++);
    semaphore.acquire();
    System.out.println(count++);
    semaphore.acquire();
    System.out.println(count++);
    semaphore.acquire();
    System.out.println(count++);
    semaphore.acquire();
    System.out.println(count++);
    semaphore.acquire();
    System.out.println(count++);
}

运行结果如下;
在这里插入图片描述

6. CountDownLatch

  • 同时等待 N 个任务执行结束.

好像跑步比赛,10个选手依次就位,哨声响才同时出发;所有选手都通过终点,才能公布成绩。

应用场景举例

  • 下载一个大文件, 将大文件分成几个小的文件, 分别让多个线程来执行相应的下载任务, 当所有线程完成任务的时候, 该大文件也就下载完成了;
  • CountDownLatch 就是用来等待所有线程完成任务的
  • 和 join不同的是, join表示执行任务的线程退出了; CountDownLatch 只是等线程完成任务, 线程只要告知CountDownLatch 我完成任务即可, 可以不用被销毁

使用举例

public static void main(String[] args) throws InterruptedException {
     // 构造方法中, 指定创建几个任务.
     CountDownLatch countDownLatch = new CountDownLatch(10);

     for (int i = 0; i < 10; i++) {
         int id = i + 1;
         Thread t = new Thread(() -> {
             System.out.println("线程" + id + "正在工作");
             try {
                 Thread.sleep(1000);
             } catch (InterruptedException e) {
                 throw new RuntimeException(e);
             }
             System.out.println("线程" + id + "完成工作");

             // 每个任务执行结束这里, 调用一下方法
             // 把 10 个线程想象成短跑比赛的 10 个运动员. countDown 就是运动员撞线了.
             countDownLatch.countDown();

             // 假设线程不退出
             while (true);
         });
         t.start();
     }

     // 主线程如何知道上述所有的任务都完成了呢??
     // 难道要在主线程中调用 10 次 join 嘛?
     // 万一要是任务结束, 但是线程不需要结束, join 不就也不行了嘛?
     // 主线程中可以使用 countDownLatch 负责等待任务结束.
     // a => all 等待所有任务结束. 当调用 countDown 次数 < 初始设置的次数, await 就会阻塞.
     countDownLatch.await();
     System.out.println("多个线程的所有任务都执行完毕了");
 }

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1118954.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【C++学习笔记】内联函数

1. 概念 以inline修饰的函数叫做内联函数&#xff0c;编译时C编译器会在调用内联函数的地方展开&#xff0c;没有函数调 用建立栈帧的开销&#xff0c;内联函数提升程序运行的效率。 如果在上述函数前增加inline关键字将其改成内联函数&#xff0c;在编译期间编译器会用函数…

思维模型 上瘾模型(hook model)

本系列文章 主要是 分享 思维模型&#xff0c;涉及各个领域&#xff0c;重在提升认知。你到底是怎么上瘾&#xff08;游戏/抖音&#xff09;的&#xff1f;我们该如何“积极的上瘾”&#xff1f;让我们来一切揭晓这背后的秘密。 1 上瘾模型的应用 1.1上瘾模型的积极应用 1 学…

【LCR 170. 交易逆序对的总数】

目录 一、题目描述二、算法原理三、代码实现3.1升序&#xff1a;3.2降序&#xff1a; 一、题目描述 二、算法原理 三、代码实现 3.1升序&#xff1a; class Solution { public:int mergeSort(vector<int>& nums, int left, int right){if (left > right){retur…

Vue基础语法2事件修饰符按键修饰符常用控件自定义指令全局样式绑定

目录 1.样式绑定 2. 事件修饰符 3. 按键修饰符 4. 常用控件 4.1 常用控件示例 4.2 修饰符 5. 自定义指令 5.1 局部 5.2 全局 1.样式绑定 class绑定 使用方式&#xff1a;v-bind:&#xff0c;expression的类型&#xff1a;字符串、数组、对象style绑定 v-bind:style&q…

从输入URL到展示出页面

目录 了解URL 1. 输入URL 2. 域名解析 3. 建立连接 4. 服务器处理请求&#xff1a; 5. 返回响应&#xff1a; 6. 浏览器解析HTML&#xff1a; 7. 加载资源&#xff1a; 8. 渲染页面&#xff1a; 9. 执行JavaScript&#xff1a; 10. 页面展示&#xff1a; 从输入URL到…

运维学习CentOS 7进行Nightingale二进制部署

.因为Nightingale需要MySQL保存一些数据&#xff0c;所以可以参考《CentOS 7.6使用mysql-8.0.31-1.el7.x86_64.rpm-bundle.tar安装Mysql 8.0》部署MySQL。 https://github.com/ccfos/nightingale/releases是可以github上下载Nightingale二进制安装包。 https://n9e.github.io/…

【COMP305 LEC 3 LEC 4】

LEC 3 A basic abstract model for a biological neuron 1. Weights of connections Neuron gets fired if it has received from the presynaptic neurons 突触前神经元 a summary impulse 脉冲, which is above a certain threshold. Signal from a single synapse突触 ma…

实时消息传送:WebSocket实现系统后台消息实时通知

实时消息传送&#xff1a;WebSocket实现系统后台消息实时通知 WebSocket简介基本实现步骤后台服务器后端接口SimpMessagingTemplate MessageDto前端客户端 示例应用 在现代Web应用中&#xff0c;提供实时通知对于改善用户体验至关重要。WebSocket技术允许建立双向通信通道&…

08-React扩展

08-React扩展 1. setState的2种写法 案例&#xff1a; export default class Demo extends Component {state {count: 0}add () > {// 获取当前的值const { count } this.state// 更新状态this.setState({ count: count 1 })console.log(count);}render() {const { coun…

WSL2的安装与配置(创建Anaconda虚拟环境、更新软件包、安装PyTorch、VSCode)

1. WSL2 安装 以管理员身份打开 PowerShell&#xff08;“开始”菜单 >“PowerShell” >单击右键 >“以管理员身份运行”&#xff09;&#xff0c;然后输入以下命令&#xff1a; dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-Linux /a…

mfc140u.dll丢失的详细解决方法,最详细修复mfc140u.dll丢失的办法分享

在计算机技术日益发展的今天&#xff0c;我们不可避免地会遇到各种各样的技术问题。其中&#xff0c;“MFC140U.DLL丢失”是一个常见的错误&#xff0c;它可能会影响我们的电脑性能和软件运行。本文将详细介绍四种解决“MFC140U.DLL丢失”问题的方法。 首先&#xff0c;我们需…

详细解读DALLE 3技术报告:Improving Image Generation with Better Captions

Diffusion models代码解读&#xff1a;入门与实战 前言&#xff1a;OpenAI是推动大模型创新的领头羊&#xff0c;最近发布的DALLE 3凭借着远超市面上其他图片生成模型的表现&#xff0c;再次火出圈。最近OpenAI官方发布了DALLE 3的技术报告《Improving Image Generation with B…

Canvas和SvG的区别是什么?

Canvas和SVG是两种用于在Web上绘制图形的不同技术&#xff0c;它们有一些区别&#xff1a; 1&#xff1a;绘图方式&#xff1a; Canvas使用JavaScript API&#xff0c;通过在画布上绘制像素来创建图形。提供了对像素级别的控制&#xff0c;可以实现复杂的图形和动画效果。SVG…

项目经理之识别项目干系人

项目干系人管理是项目管理中的重要一环&#xff0c;识别和管理好项目干系人是成功实施项目的关键之一。本文将介绍4321项目干系人识别方法、干系人等级册以及五步判断法等工具&#xff0c;帮助项目经理更好地识别和管理项目干系人。同时&#xff0c;本文还将介绍干系人能量方格…

【疯狂Java讲义】Java学习记录(IO流)

IO流 IO&#xff1a;Input / Output 完成输入 / 输出 应用程序运行时——数据在内存中 ←→ 把数据写入硬盘&#xff08;磁带&#xff09; 内存中的数据不可持久保存 输入&#xff1a;从外部存储器&#xff08;硬盘、磁带、U盘&#…

在unity中利用公开变量引用物体和组件(有手就会)

在任意的脚本组件中&#xff08;必须先绑定物体&#xff09;&#xff0c;添加一个公开的 GameObject 类型的变量 using System.Collections; using System.Collections.Generic; using UnityEngine;public class test1 : MonoBehaviour {public GameObject other;// Start is …

蛋白质折叠

文章目录 4. GNNs for Protein foldingChemical Structures as GraphsProtein Structure PredictionMethods for Protein Structure PredictionOld method: fragment assemblyNew StrategyCo-evolution Analysis Towards An End-to-End Workflow AlphaFold2 architecture补充&a…

物联网AI MicroPython传感器学习 之 DRV8833电机驱动模块

学物联网&#xff0c;来万物简单IoT物联网&#xff01;&#xff01; 一、产品简介 DRV8833电机驱动模块是一种单H桥电机驱动芯片&#xff0c;可驱动2个直流电机和4线步进电机。内置过流保护&#xff0c;短路保护&#xff0c;欠压闭锁和过热保护&#xff0c;带低功耗睡眠模式。…

一篇文章讲懂mysql中的锁

事务的隔离性是由锁来实现的。 为什么需要锁 锁是计算机协调多个进程或线程并发访问某一资源的机制。在程序开发中会存在多线程同步的问题&#xff0c;当多个线程并发访问某个数据的时候&#xff0c;尤其是针对一些敏感的数据&#xff08;比如订单、金额等&#xff09;&#x…

高校教务系统登录页面JS分析——巢湖学院

高校教务系统密码加密逻辑及JS逆向 本文将介绍高校教务系统的密码加密逻辑以及使用JavaScript进行逆向分析的过程。通过本文&#xff0c;你将了解到密码加密的基本概念、常用加密算法以及如何通过逆向分析来破解密码。 本文仅供交流学习&#xff0c;勿用于非法用途。 一、密码加…