机器学习-K-近邻(KNN)算法

news2024/11/19 14:32:44

        

目录

一 . K-近邻算法(KNN)概述 

二、KNN算法实现

三、 MATLAB实现

四、 实战


一 . K-近邻算法(KNN)概述 

        K-近邻算法(KNN)是一种基本的分类算法,它通过计算数据点之间的距离来进行分类。在KNN算法中,当我们需要对一个未知数据点进行分类时,它会与训练集中的各个数据点进行特征比较,并找到与之最相似的前K个数据点。然后根据这K个数据点的类别来确定未知数据点所属的类别。

        KNN算法的步骤非常简单: 1)计算未知数据点与训练集中各个数据点之间的距离。常用的距离度量包括欧氏距离和曼哈顿距离。 2)按照距离递增的顺序对数据点进行排序。 3)选择距离最小的K个数据点。 4)根据这K个数据点的类别来确定未知数据点的类别。通常采用多数表决的方式,即统计K个数据点中各个类别出现的次数,将出现次数最多的类别作为未知数据点的预测类别。

        KNN算法的特点是简单易懂,容易实现。它没有显式的训练过程,仅依赖于已有的训练数据。然而,KNN算法的计算复杂度较高,尤其是当训练集很大时。此外,KNN算法还对训练样本的质量和数量敏感,需要合理地选择K值和距离度量方法。

     在KNN中,通过计算对象间距离来作为各个对象之间的非相似性指标,避免了对象之间的匹配问题,在这里距离一般使用欧氏距离或曼哈顿距离:

    

        同时,KNN通过依据k个对象中占优的类别进行决策,而不是单一的对象类别决策。这两点就是KNN算法的优势。

   接下来对KNN算法的思想总结一下:就是在训练集中数据和标签已知的情况下,输入测试数据,将测试数据的特征与训练集中对应的特征进行相互比较,找到训练集中与之最为相似的前K个数据,则该测试数据对应的类别就是K个数据中出现次数最多的那个分类,其算法的描述为:

  1. 首先需要收集足够的带有标签的训练数据,这些数据包含了输入特征和相应的输出标签。

  2. 对于输入的测试数据,需要计算它与每个训练数据之间的距离(如欧氏距离、曼哈顿距离等)。

  3. 选取距离测试数据最近的K个训练数据,并统计它们中出现最多的标签类别。

  4. 将测试数据归类为出现次数最多的标签类别。

二、KNN算法实现

        KNN算法的实现通常可以使用Python等编程语言进行实现

        

import numpy as np

class KNN():
    def __init__(self, k=3, distance='euclidean'):
        self.k = k
        self.distance = distance
        
    def fit(self, X, y):
        self.X_train = X
        self.y_train = y
        
    def predict(self, X):
        y_pred = []
        for x in X:
            distances = []
            for i, x_train in enumerate(self.X_train):
                if self.distance == 'euclidean':
                    dist = np.linalg.norm(x - x_train)
                elif self.distance == 'manhattan':
                    dist = np.sum(np.abs(x - x_train))
                distances.append((dist, self.y_train[i]))
            distances.sort()
            neighbors = distances[:self.k]
            classes = {}
            for neighbor in neighbors:
                if neighbor[1] in classes:
                    classes[neighbor[1]] += 1
                else:
                    classes[neighbor[1]] = 1
            max_class = max(classes, key=classes.get)
            y_pred.append(max_class)
        return y_pred

        这段代码实现了基本的KNN分类算法,包括fit函数进行训练集拟合,predict函数进行预测。其中k参数表示要选择的最近邻居数,distance参数为距离度量方法。在上述示例代码中,欧氏距离和曼哈顿距离两种距离度量方法均已实现。

        通过选择不同的数据集和参数,可以验证KNN算法的分类性能。在实现KNN算法时,还可以采用更加高效的数据结构(如kd树、球树)和距离度量方法等技巧,来对算法进行优化和改进。

三、 MATLAB实现

        

  1. 使用pdist2函数计算欧氏距离,而不是手动计算,可以极大地提高计算速度。

  2. 在计算距离之后,直接利用sort函数进行排序,并选择前k个最近邻。这样可以简化代码,并且使用向量化计算,计算速度更快。

  3. 使用mode函数求取邻居中出现次数最多的类别作为预测结果,并且使用2维输入方式保证正确性。

function y_pred = knn(X_train, y_train, X_test, k)
    n_train = size(X_train, 1);
    n_test = size(X_test, 1);
    y_pred = zeros(n_test, 1);

    % 计算欧氏距离
    distances = pdist2(X_train, X_test);
    
    % 选择前k个最近邻
    [~, indices] = sort(distances);
    neighbors = y_train(indices(1:k,:));
    
    % 使用投票法预测标签
    y_pred = mode(neighbors, 1)';
end

四、 实战

     在这里根据一个人收集的约会数据,根据主要的样本特征以及得到的分类,对一些未知类别的数据进行分类,大致就是这样。 

     我使用的是python 3.4.3,首先建立一个文件,例如date.py,具体的代码如下:

#coding:utf-8

from numpy import *
import operator
from collections import Counter
import matplotlib
import matplotlib.pyplot as plt


###导入特征数据
def file2matrix(filename):
    fr = open(filename)
    contain = fr.readlines()###读取文件的所有内容
    count = len(contain)
    returnMat = zeros((count,3))
    classLabelVector = []
    index = 0
    for line in contain:
        line = line.strip() ###截取所有的回车字符
        listFromLine = line.split('\t')
        returnMat[index,:] = listFromLine[0:3]###选取前三个元素,存储在特征矩阵中
        classLabelVector.append(listFromLine[-1])###将列表的最后一列存储到向量classLabelVector中
        index += 1
    
    ##将列表的最后一列由字符串转化为数字,便于以后的计算
    dictClassLabel = Counter(classLabelVector)
    classLabel = []
    kind = list(dictClassLabel)
    for item in classLabelVector:
        if item == kind[0]:
            item = 1
        elif item == kind[1]:
            item = 2
        else:
            item = 3
        classLabel.append(item)
    return returnMat,classLabel#####将文本中的数据导入到列表

##绘图(可以直观的表示出各特征对分类结果的影响程度)
datingDataMat,datingLabels = file2matrix('D:\python\Mechine learing in Action\KNN\datingTestSet.txt')
fig = plt.figure()
ax = fig.add_subplot(111)
ax.scatter(datingDataMat[:,0],datingDataMat[:,1],15.0*array(datingLabels),15.0*array(datingLabels))
plt.show()

## 归一化数据,保证特征等权重
def autoNorm(dataSet):
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    normDataSet = zeros(shape(dataSet))##建立与dataSet结构一样的矩阵
    m = dataSet.shape[0]
    for i in range(1,m):
        normDataSet[i,:] = (dataSet[i,:] - minVals) / ranges
    return normDataSet,ranges,minVals

##KNN算法
def classify(input,dataSet,label,k):
    dataSize = dataSet.shape[0]
    ####计算欧式距离
    diff = tile(input,(dataSize,1)) - dataSet
    sqdiff = diff ** 2
    squareDist = sum(sqdiff,axis = 1)###行向量分别相加,从而得到新的一个行向量
    dist = squareDist ** 0.5
    
    ##对距离进行排序
    sortedDistIndex = argsort(dist)##argsort()根据元素的值从大到小对元素进行排序,返回下标

    classCount={}
    for i in range(k):
        voteLabel = label[sortedDistIndex[i]]
        ###对选取的K个样本所属的类别个数进行统计
        classCount[voteLabel] = classCount.get(voteLabel,0) + 1
    ###选取出现的类别次数最多的类别
    maxCount = 0
    for key,value in classCount.items():
        if value > maxCount:
            maxCount = value
            classes = key
    return classes

##测试(选取10%测试)
def datingTest():
    rate = 0.10
    datingDataMat,datingLabels = file2matrix('D:\python\Mechine learing in Action\KNN\datingTestSet.txt')
    normMat,ranges,minVals = autoNorm(datingDataMat)
    m = normMat.shape[0]
    testNum = int(m * rate)
    errorCount = 0.0
    for i in range(1,testNum):
        classifyResult = classify(normMat[i,:],normMat[testNum:m,:],datingLabels[testNum:m],3)
        print("分类后的结果为:,", classifyResult)
        print("原结果为:",datingLabels[i])
        if(classifyResult != datingLabels[i]):
                                  errorCount += 1.0
    print("误分率为:",(errorCount/float(testNum)))
                                  
###预测函数
def classifyPerson():
    resultList = ['一点也不喜欢','有一丢丢喜欢','灰常喜欢']
    percentTats = float(input("玩视频所占的时间比?"))
    miles = float(input("每年获得的飞行常客里程数?"))
    iceCream = float(input("每周所消费的冰淇淋公升数?"))
    datingDataMat,datingLabels = file2matrix('D:\python\Mechine learing in Action\KNN\datingTestSet2.txt')
    normMat,ranges,minVals = autoNorm(datingDataMat)
    inArr = array([miles,percentTats,iceCream])
    classifierResult = classify((inArr-minVals)/ranges,normMat,datingLabels,3)
    print("你对这个人的喜欢程度:",resultList[classifierResult - 1])

新建test.py文件了解程序的运行结果,代码:

#coding:utf-8

from numpy import *
import operator
from collections import Counter
import matplotlib
import matplotlib.pyplot as plt

import sys
sys.path.append("D:\python\Mechine learing in Action\KNN")
import date
date.classifyPerson()


                

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1117056.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

算法通关村第二关-青铜终于学会链表了

大家好我是苏麟 , 今天来学反转链表 . 反转链表 描述 : 给你单链表的头节点 head ,请你反转链表,并返回反转后的链表。 LeetCode 206.反转链表 : 206. 反转链表 牛客 BM1 反转链表 : 分析 : 本题有两种方法,带头结点和不带头结点&am…

【C语言精髓之指针】结构体指针(->与.两个运算符的区别)

/*** file * author jUicE_g2R(qq:3406291309)————彬(bin-必应)* 通信与信息专业大二在读 * copyright 2023.10* COPYRIGHT 原创技术笔记:转载需获得博主本人同意,且需标明转载源* language C/C* IDE Base on Mic…

下载安装Microsoft ODBC Driver for SQL Server和配置SQL Server ODBC数据源

1. 下载SQL Server ODBC驱动: Microsoft ODBC Driver for SQL Server - ODBC Driver for SQL Server | Microsoft Learn 2. 安装SQL Server ODBC驱动: 运行安装程序,出现如下图所示页面; 选择下一步;选择我同意许可协…

git学习——第2节 时光机穿梭

我们已经成功地添加并提交了一个readme.txt文件,现在,是时候继续工作了,于是,我们继续修改readme.txt文件,改成如下内容: Git is a distributed version control system. Git is free software. 现在&…

uni——底部弹框显示,底部导航隐藏

案例 在uni-app中,如果你在tabbar页面显示一个底部弹框,底部导航默认是会依旧显示的。如果你想在弹框显示时隐藏底部导航,你可以使用uni.hideTabBar和uni.showTabBar方法来控制底部导航的显示和隐藏。 export default {methods: {openPopup(…

汽车空调工作总结

工作总结 2022年3月加入公司,公司在河南,从事车载空调等相关项目,我的岗位是嵌入式软件工程师,在工作中也遇到了很多机遇和挑战,也学到了非常多的东西,在这里给大家分享下总结经验。 关于工作、公司 毕业…

线上答题活动小程序结合线下大屏复盘总结

线上答题活动小程序结合线下大屏复盘总结 ~ 说来话长,这个活动也接近尾声了,从刚开始着手开发,到现在已过去半年,好不夸张的,当时从4月份开始接触,现在已经十月份了 该小程序我发下主界面截图&#xff0…

ant提供对所有系统属性的访问

ant提供对所有系统属性的访问&#xff0c;就好像这些系统属性已经用 <property>任务定义过一样。 例如&#xff0c;下面的build文件中通过${os.name}获取操作系统名称&#xff0c;通过${java.home}获取Java的安装路径&#xff1a; <project name"demo_project&…

2023年最新版CorelDraw(cdr)软件下载安装教程

CorelDRAW 2023是Corel公司推出的最新版本的图形设计软件。CorelDRAW是一款功能强大的矢量图形编辑工具&#xff0c;被广泛用于图形设计、插图、页面布局、照片编辑和网页设计等领域。 1. 新增的设计工具&#xff1a;CorelDRAW 2023引入了一些全新的设计工具&#xff0c;使用户…

Adobe产品2024

一、软件下载&#xff1a; 二、软件介绍&#xff1a; Adobe公司旗下的产品在影视后期、平面设计等领域有着无可取代的地位。在创意和设计领域中&#xff0c;产品有多达 21 个&#xff0c;包括 Photoshop、Illustrator、InDesign、Premiere Pro、After Effects 和 Acrobat Pro …

LED显示屏系统组成及工作过程

LED显示屏是一种平板显示器&#xff0c;由一个个小的LED模块面板组成&#xff0c;用来显示文字、图像、视频等各种信息的设备&#xff0c;广泛应用于商业传媒、文化演出市场、体育场馆、信息传播、新闻发布、证券交易等不同环境和场景的需要。 LED显示屏系统是基于LED显示屏设备…

【算法训练-回溯算法 零】回溯算法解题框架

抽象地说&#xff0c;解决一个回溯问题&#xff0c;实际上就是遍历一棵决策树的过程&#xff0c;树的每个叶子节点存放着一个合法答案。你把整棵树遍历一遍&#xff0c;把叶子节点上的答案都收集起来&#xff0c;就能得到所有的合法答案。站在回溯树的一个节点上&#xff0c;你…

二维码智慧门牌管理系统升级解决方案

文章目录 前言一、返工返修区域的重要性二、作业流程简化与提高效率三、数据准确性的提升四、易维护性与可扩展性 前言 随着城市的发展和人们生活水平的提高&#xff0c;门牌管理系统也在不断升级。最近&#xff0c;二维码智慧门牌管理系统也迎来了升级解决方案。其中&#xf…

【算法|动态规划No.26】leetcode1745. 分割回文串 IV

个人主页&#xff1a;兜里有颗棉花糖 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 兜里有颗棉花糖 原创 收录于专栏【手撕算法系列专栏】【LeetCode】 &#x1f354;本专栏旨在提高自己算法能力的同时&#xff0c;记录一下自己的学习过程&#xff0c;希望…

idea git只查看某个人提交的代码记录

git插件只查看某个人提交的代码记录 右键显示弹框&#xff0c;选择Select in Git Log 展示的页面如下&#xff1a; 按住ctrlenter完成查询

操作系统-进程同步、进程互斥(王道视频p26、课本ch6)

这一节&#xff0c;总的来说&#xff0c;就是引出了 “进程同步”的内在含义 &#xff0c;“进程互斥”&#xff08;有限资源访问&#xff09;的解决方案和原则

顺序表第三节(通讯录基础版)

目录 可以先看一遍第二节在看这个 顺序表&#xff08;第二节&#xff09;实现和解析-CSDN博客 1.顺序表的头文件 2.初始化通讯录 3.添加通讯录 特殊&#xff1a;查找对应姓名的通讯录的序号 4.删除通讯录 5.展示通讯录 6.查找通讯录 7.修改通讯录 8.销毁通讯…

公司注册类型分类标准是怎样的

公司法上的分支机构、分公司、子公司是什么 - 公司法 (一)以公司股东的责任范围为标准分类 以公司股东的责任范围为标准&#xff0c;亦即以公司股东是否对公司债务承担责任为标准&#xff0c;可将公司分为无限责任公司、两合公司、股份两合公司、股份有限公司和有限责任公司。…

调用导致堆栈不对称。原因可能是托管的 PInvoke 签名与非托管的目标签名不匹配。请检查 PInvoke 签名的调用约定和参数与非托管的目标签名是否匹配。

调用方出错提示如下&#xff1a; 调用导致堆栈不对称。原因可能是托管的 PInvoke 签名与非托管的目标签名不匹配。请检查 PInvoke 签名的调用约定和参数与非托管的目标签名是否匹配。 可能原因&#xff1a; 修改之前的C定义&#xff1a; extern "C" __declspec(d…

系统设计 - 我们如何通俗的理解那些技术的运行原理 - 第二部分:CI CD、设计模式、数据库

本心、输入输出、结果 文章目录 系统设计 - 我们如何通俗的理解那些技术的运行原理 - 第二部分&#xff1a;CI CD、设计模式、数据库前言CI/CD第 1 部分 - 带有 CI/CD 的 SDLC第 2 部分 - CI 和 CD 之间的区别第 3 部分 - CI/CD 管道 Netflix Tech Stack &#xff08;CI/CD Pip…