【yolov8目标检测】使用yolov8训练自己的数据集

news2024/11/19 18:32:52

目录

准备数据集 

python安装yolov8 

配置yaml 

从0开始训练

从预训练模型开始训练


准备数据集 

首先得准备好数据集,你的数据集至少包含images和labels,严格来说你的images应该包含训练集train、验证集val和测试集test,不过为了简单说明使用步骤,其中test可以不要,val和train可以用同一个,因此我这里只用了一个images

其中images装的是图片数据,labels装的是与图片一一对应同名的yolo格式txt,即类别号,经过归一化的中心x和y坐标以及宽和高

python安装yolov8 

然后我们开始准备yolov8,使用python的API的话就比较简单,首先安装一下yolov8

用pip的话安装的话

pip install ultralytics

使用pycharm安装的话

配置yaml 

安装完了之后,差不多就可以开始了,我们首先看看官方给的代码

from ultralytics import YOLO

# Load a model
model = YOLO("yolov8n.yaml")  # build a new model from scratch
model = YOLO("yolov8n.pt")  # load a pretrained model (recommended for training)

# Use the model
model.train(data="coco128.yaml", epochs=3)  # train the model
metrics = model.val()  # evaluate model performance on the validation set
results = model("https://ultralytics.com/images/bus.jpg")  # predict on an image
path = model.export(format="onnx")  # export the model to ONNX format

其中迷惑的是yolov8n.yaml、yolov8n.pt和coco128.yaml这几个文件,yolov8n.yaml是yolov8的配置,yolov8n.pt是预训练的模型,coco128.yaml是coco数据集的配置参数

因此如果我们想要训练自己的模型的话,需要修改一下配置文件,首先到GitHub上下载yolov8n.yaml和coco128.yaml下来,这两个文件的位置有可能会变,所以最好在仓库上直接搜索

大概长这样,你也可以自己创建,然后把内容复制进去

yolov8n.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 80  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

coco128.yaml

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco128  ← downloads here (7 MB)


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: ../datasets/coco128  # dataset root dir
train: images/train2017  # train images (relative to 'path') 128 images
val: images/train2017  # val images (relative to 'path') 128 images
test:  # test images (optional)

# Classes
names:
  0: person
  1: bicycle
  2: car
  3: motorcycle
  4: airplane
  5: bus
  6: train
  7: truck
  8: boat
  9: traffic light
  10: fire hydrant
  11: stop sign
  12: parking meter
  13: bench
  14: bird
  15: cat
  16: dog
  17: horse
  18: sheep
  19: cow
  20: elephant
  21: bear
  22: zebra
  23: giraffe
  24: backpack
  25: umbrella
  26: handbag
  27: tie
  28: suitcase
  29: frisbee
  30: skis
  31: snowboard
  32: sports ball
  33: kite
  34: baseball bat
  35: baseball glove
  36: skateboard
  37: surfboard
  38: tennis racket
  39: bottle
  40: wine glass
  41: cup
  42: fork
  43: knife
  44: spoon
  45: bowl
  46: banana
  47: apple
  48: sandwich
  49: orange
  50: broccoli
  51: carrot
  52: hot dog
  53: pizza
  54: donut
  55: cake
  56: chair
  57: couch
  58: potted plant
  59: bed
  60: dining table
  61: toilet
  62: tv
  63: laptop
  64: mouse
  65: remote
  66: keyboard
  67: cell phone
  68: microwave
  69: oven
  70: toaster
  71: sink
  72: refrigerator
  73: book
  74: clock
  75: vase
  76: scissors
  77: teddy bear
  78: hair drier
  79: toothbrush


# Download script/URL (optional)
download: https://ultralytics.com/assets/coco128.zip

然后修改yolov8n.yaml,把nc的数值改成你的数据集的类别数,我这里的数据集只有乌骨鸡和狮头鹅两个

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLOv8 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect

# Parameters
nc: 2  # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs

# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9

# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12

  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)

  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)

  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)

  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

然后修改coco128.yaml,我把文件名也改成了data.yaml,path改成images和labels的上一级目录地址,train改成训练集相对于path的地址,val也是改成验证集的相对于path的地址,我这里训练集和验证集用的是同一个嘿嘿嘿,然后把test注释掉,因为我没用测试集,还有就是names那里改成你的训练集的类别名,并把多余的类别删掉

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco128  ← downloads here (7 MB)


# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: C:/Users/Yezi/Desktop/人工智能实训/HW2/data # dataset root dir
train: images # train images (relative to 'path') 128 images
val: images # val images (relative to 'path') 128 images
#test:  # test images (optional)

# Classes
names:
  0: goose
  1: chicken

这样子就配置好了

然后开始训练

从0开始训练

下面是从0开始训练的过程

其实训练的代码就两行

model = YOLO("yolov8n.yaml")  # build a new model from scratch
model.train(data="data.yaml", epochs=5)  # train the model

不过从0开始训练的效果并不好,下面是我自己的测试代码,由于我电脑比较烂,GPU摆不上用场,所以只能用cpu训练

from ultralytics import YOLO
import matplotlib.pyplot as plt

model = YOLO("yolov8n.yaml")  # build a new model from scratch
model.train(data="data.yaml", epochs=30, device='cpu')  # train the model
model.val(data="data.yaml")
results = model(r"C:\Users\Yezi\Desktop\人工智能实训\HW2\data\images\00909.jpg")  # predict on an image
plt.imshow(results[0].plot())
plt.show()
results = model(r"C:\Users\Yezi\Desktop\人工智能实训\HW2\data\images\100318.jpg")  # predict on an image
plt.imshow(results[0].plot())
plt.show()

从预训练模型开始训练

官方推荐用预训练好的模型开始训练

首先下载一个官方预训练好的模型

我这里下载的是yolov8n

然后使用预训练模型训练我的数据集

from ultralytics import YOLO
import matplotlib.pyplot as plt

model=YOLO("yolov8n.pt")
model.train(data="data.yaml", epochs=30, device='cpu')  # train the model
model.val(data="data.yaml")
results = model(r"C:\Users\Yezi\Desktop\人工智能实训\HW2\data\images\00909.jpg")  # predict on an image
plt.imshow(results[0].plot())
plt.show()
results = model(r"C:\Users\Yezi\Desktop\人工智能实训\HW2\data\images\100318.jpg")  # predict on an image
plt.imshow(results[0].plot())
plt.show()

 乌骨鸡的效果是这样的

狮头鹅的效果是这样的

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1109517.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

2023年10月中国数据库排行榜:墨天轮榜单前五开新局,金仓、亚信热度攀升

怀鸿鹄之志,展骐骥之跃。 2023年10月的 墨天轮中国数据库流行度排行 火热出炉,本月共有286个数据库参与排名。本月排行榜前十名变动较大,**华为 openGauss 重归探花之位,人大金仓 KingBase 热度上升,亚信 AntDB 进军10…

开源软件-禅道Zentao

禅道Zentao 简介漏洞复现SQL注入漏洞**16.5****router.class.php SQL注入** **v18.0-v18.3****后台命令执行** 远程命令执行漏洞(RCE)后台命令执行 简介 是一款开源的项目管理软件,旨在帮助团队组织和管理他们的项目。Zentao提供了丰富的功能…

Spring Security—Servlet 应用架构

目录 一、Filter(过滤器)回顾 二、DelegatingFilterProxy 三、FilterChainProxy 四、SecurityFilterChain 五、Security Filter 六、打印出 Security Filter 七、添加自定义 Filter 到 Filter Chain 八、处理 Security 异常 九、保存认证之间的…

关于统信UOS不能使用“modprobe brd”创建内存盘的问题

前言 我自用的电脑内存都比较大,因此很早就养成了使用内存做临时盘的习惯 内存盘的好处很多,比如将系统临时文件夹、浏览器缓存文件等设置到内存盘,不仅可以提升速度,还可以减少对固态硬盘的写入,提升固态盘的使用寿…

金融机器学习方法:回归分析

回归分析是统计学中的一个重要分支,它用于建立一个或多个自变量和一个因变量之间的关联模型。在本博客中,我们将深入探讨线性回归和逻辑回归这两种常见的回归分析方法,并通过Python示例进行分析。 目录 1.线性回归1.1 模型介绍1.2 示例分析 …

使用STM32怎么喂狗 (IWDG)

STM32F1 的独立看门狗(以下简称 IWDG)。 STM32F1内部自带了两个看门狗,一个是独立看门狗 IWDG,另一个是窗口看门狗 WWDG, 本章只介绍独立看门狗 IWDG,窗口看门狗 WWDG 会在后面章节介绍。 本章要实现的功能…

吉利银河L6征战2023混合动力汽车极限挑战赛获双冠,同级“优等生”不负众望

9月22-9月27日,由中汽信科携手昆明检验中心联合发起的国内首个混动汽车专属赛事2023混合动力汽车极限挑战赛在云南圆满结束。比赛项目涉及纯电续航里程、亏电油耗、高速真实能耗、高原山地极限能耗等多项衡量混动车买点的关键指标。在为期六天的挑战中,这…

java SpringBoot+Vue3打造企业级一体化SaaS系统视频课程,开发ERP与CRM系统实用课程(免费领取)

java SpringBootVue3打造企业级一体化SaaS系统视频课程,开发ERP与CRM系统实用课程(免费领取) : 查看文末领取课程 第1章 课程导学 1-1 、导学(课程简介、ERP与CRM融合成为大趋势) 1-2 、课程学习方法&am…

跨境电商商城源码(多语言多商户进出口电商平台)

一、跨境电商商城系统源码包括以下几个部分 前端框架:uni-app,vue 后端框架:ThinkPHP5.wokerman 支付系统:PayPal、USDT等主流支付平台 语言包:跨境电商支持15种语言,后续会增加 前端:包含APP端、小程序端、…

半主动悬架系统开发与测试(基于Modelbase实现)

ModelBase是经纬恒润开发的车辆仿真软件,包含两个大版本:动力学版本、智能驾驶版本。动力学版包含高精度动力学模型,能很好地复现车辆在实际道路中运行的各种状态变化,可用于乘用车、商用车动力底盘系统算法开发、控制器仿真测试&…

竞赛 深度学习乳腺癌分类

文章目录 1 前言2 前言3 数据集3.1 良性样本3.2 病变样本 4 开发环境5 代码实现5.1 实现流程5.2 部分代码实现5.2.1 导入库5.2.2 图像加载5.2.3 标记5.2.4 分组5.2.5 构建模型训练 6 分析指标6.1 精度,召回率和F1度量6.2 混淆矩阵 7 结果和结论8 最后 1 前言 &…

10_18Qt

头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include<QMovie> #include<QDebug> QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr)…

35 机器学习(三):混淆矩阵|朴素贝叶斯|决策树|随机森林

文章目录 分类模型的评估混淆矩阵精确率和召回率 接口介绍其他的补充 朴素贝叶斯基础原理介绍拉普拉斯平滑下面给出应用的例子朴素贝叶斯的思辨 决策树基础使用基本原理信息熵信息增益信息增益率Gini指数 剪枝api介绍 随机森林------集成学习初识基本使用api介绍 分类模型的评估…

基础设施SIG月度动态:T-One 社区版调度引擎全量替换至 runnerV2 版本,调度性能平均提升 6.8 倍

基础设施 SIG&#xff08;OpenAnolis Infra SIG&#xff09;目标&#xff1a;负责 OpenAnolis 社区基础设施工程平台的建设&#xff0c;包括官网、Bugzilla、Maillist、ABS、ANAS、CI 门禁以及社区 DevOps 相关的研发工程系统。 01 SIG 整体进展 1.官网 SIG 外链跳转增加确认…

List执行remove操作间歇性报错UnsupportedOperationException

废话不多说&#xff0c;直接上一个代码&#xff0c;意思很简单&#xff0c;就是把list中的"全部"置顶&#xff0c;但是不知道怎么会偶发报错。 List<UserDept> voList new ArrayList<>(userGroupService.findByName(groupName));for(UserDept userDept…

点云相关内容总结

点云相关内容总结 地形相关内容1. 机载点云地面点和非地面点识别 地形相关内容 1. 机载点云地面点和非地面点识别 识别场景中的梯度较大的区域&#xff0c;进行渐进三角网滤波&#xff0c;梯度大的地方补一下初始地面点 与其他软件相关算法结果进行对比 软件1 三角网滤波算…

塑料透光率测试可测试塑料部件的透明度和纯度

随着电子设备的快速发展&#xff0c;尤其是智能手机、平板电脑、可穿戴设备等新兴产品的普及&#xff0c;对塑料材料的需求量也在逐渐增加。因为这些电子设备需要大量的塑料材料来制造外壳、内部结构、部件等。电子设备在塑料行业的发展迅速&#xff0c;推动了塑料材料的技术进…

什么是低代码开发?低代码开发平台哪个更好?

什么是低代码开发&#xff1f; 有人觉得低代码只是个概念&#xff0c;一无是处&#xff1b; 有人将低代码吹上了天&#xff0c;将其送上神坛&#xff1b; 那么我们先来看看低代码开发是什么。 低代码开发&#xff08;Low-Code&#xff09;顾名思义&#xff0c;是以少量的代码…

铁威马新品F2-212上线,全新设计,极致使用体验

铁威马&#xff0c;作为国民专业级NAS&#xff0c;在过去的十多年里始终专注于存储技术的开发升级&#xff0c;旨在为用户提供全面、可靠且值得信赖的数据存储产品和解决方案。铁威马现在的产品线涵盖了2、4、5、6、8、9、12、16盘位等多种选择&#xff0c;不仅配置高端&#x…

海外问卷调查加盟可靠吗?

海外问卷调查加盟是可靠的&#xff0c;因为这本身就是一个稳定、长期的网络项目&#xff0c;已经存在十几年的时间了&#xff0c;一直都有人在靠它吃饭。 大家好&#xff0c;我是橙河老师&#xff0c;今天讲一讲海外问卷调查加盟可靠吗&#xff1f; 有许多朋友都曾尝试做过一…