竞赛 深度学习乳腺癌分类

news2025/1/10 16:05:48

文章目录

  • 1 前言
  • 2 前言
  • 3 数据集
    • 3.1 良性样本
    • 3.2 病变样本
  • 4 开发环境
  • 5 代码实现
    • 5.1 实现流程
    • 5.2 部分代码实现
      • 5.2.1 导入库
      • 5.2.2 图像加载
      • 5.2.3 标记
      • 5.2.4 分组
      • 5.2.5 构建模型训练
  • 6 分析指标
    • 6.1 精度,召回率和F1度量
    • 6.2 混淆矩阵
  • 7 结果和结论
  • 8 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 深度学习乳腺癌分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 前言

乳腺癌是全球第二常见的女性癌症。2012年,它占所有新癌症病例的12%,占所有女性癌症病例的25%。

当乳腺细胞生长失控时,乳腺癌就开始了。这些细胞通常形成一个肿瘤,通常可以在x光片上直接看到或感觉到有一个肿块。如果癌细胞能生长到周围组织或扩散到身体的其他地方,那么这个肿瘤就是恶性的。

以下是报告:

  • 大约八分之一的美国女性(约12%)将在其一生中患上浸润性乳腺癌。
  • 2019年,美国预计将有268,600例新的侵袭性乳腺癌病例,以及62,930例新的非侵袭性乳腺癌。
  • 大约85%的乳腺癌发生在没有乳腺癌家族史的女性身上。这些发生是由于基因突变,而不是遗传突变
  • 如果一名女性的一级亲属(母亲、姐妹、女儿)被诊断出患有乳腺癌,那么她患乳腺癌的风险几乎会增加一倍。在患乳腺癌的女性中,只有不到15%的人的家人被诊断出患有乳腺癌。

3 数据集

该数据集为学长实验室数据集。

搜先这是图像二分类问题。我把数据拆分如图所示


dataset train
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
// validation
benign
b1.jpg
b2.jpg
//
malignant
m1.jpg
m2.jpg
//…

训练文件夹在每个类别中有1000个图像,而验证文件夹在每个类别中有250个图像。

3.1 良性样本

在这里插入图片描述
在这里插入图片描述

3.2 病变样本

在这里插入图片描述
在这里插入图片描述

4 开发环境

  • scikit-learn
  • keras
  • numpy
  • pandas
  • matplotlib
  • tensorflow

5 代码实现

5.1 实现流程

完整的图像分类流程可以形式化如下:

我们的输入是一个由N个图像组成的训练数据集,每个图像都有相应的标签。

然后,我们使用这个训练集来训练分类器,来学习每个类。

最后,我们通过让分类器预测一组从未见过的新图像的标签来评估分类器的质量。然后我们将这些图像的真实标签与分类器预测的标签进行比较。

5.2 部分代码实现

5.2.1 导入库

import json
import math
import os
import cv2
from PIL import Image
import numpy as np
from keras import layers
from keras.applications import DenseNet201
from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, TensorBoard
from keras.preprocessing.image import ImageDataGenerator
from keras.utils.np_utils import to_categorical
from keras.models import Sequential
from keras.optimizers import Adam
import matplotlib.pyplot as plt
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.metrics import cohen_kappa_score, accuracy_score
import scipy
from tqdm import tqdm
import tensorflow as tf
from keras import backend as K
import gc
from functools import partial
from sklearn import metrics
from collections import Counter
import json
import itertools

5.2.2 图像加载

接下来,我将图像加载到相应的文件夹中。

def Dataset_loader(DIR, RESIZE, sigmaX=10):
    IMG = []
    read = lambda imname: np.asarray(Image.open(imname).convert("RGB"))
    for IMAGE_NAME in tqdm(os.listdir(DIR)):
        PATH = os.path.join(DIR,IMAGE_NAME)
        _, ftype = os.path.splitext(PATH)
        if ftype == ".png":
            img = read(PATH)
           
            img = cv2.resize(img, (RESIZE,RESIZE))
           
            IMG.append(np.array(img))
    return IMG

benign_train = np.array(Dataset_loader('data/train/benign',224))
malign_train = np.array(Dataset_loader('data/train/malignant',224))
benign_test = np.array(Dataset_loader('data/validation/benign',224))
malign_test = np.array(Dataset_loader('data/validation/malignant',224))

5.2.3 标记

之后,我创建了一个全0的numpy数组,用于标记良性图像,以及全1的numpy数组,用于标记恶性图像。我还重新整理了数据集,并将标签转换为分类格式。

benign_train_label = np.zeros(len(benign_train))
malign_train_label = np.ones(len(malign_train))
benign_test_label = np.zeros(len(benign_test))
malign_test_label = np.ones(len(malign_test))

X_train = np.concatenate((benign_train, malign_train), axis = 0)
Y_train = np.concatenate((benign_train_label, malign_train_label), axis = 0)
X_test = np.concatenate((benign_test, malign_test), axis = 0)
Y_test = np.concatenate((benign_test_label, malign_test_label), axis = 0)

s = np.arange(X_train.shape[0])
np.random.shuffle(s)
X_train = X_train[s]
Y_train = Y_train[s]

s = np.arange(X_test.shape[0])
np.random.shuffle(s)
X_test = X_test[s]
Y_test = Y_test[s]

Y_train = to_categorical(Y_train, num_classes= 2)
Y_test = to_categorical(Y_test, num_classes= 2)

5.2.4 分组

然后我将数据集分成两组,分别具有80%和20%图像的训练集和测试集。让我们看一些样本良性和恶性图像

x_train, x_val, y_train, y_val = train_test_split(
    X_train, Y_train, 
    test_size=0.2, 
    random_state=11
)

w=60
h=40
fig=plt.figure(figsize=(15, 15))
columns = 4
rows = 3

for i in range(1, columns*rows +1):
    ax = fig.add_subplot(rows, columns, i)
    if np.argmax(Y_train[i]) == 0:
        ax.title.set_text('Benign')
    else:
        ax.title.set_text('Malignant')
    plt.imshow(x_train[i], interpolation='nearest')
plt.show()

在这里插入图片描述

5.2.5 构建模型训练

我使用的batch值为16。batch是深度学习中最重要的超参数之一。我更喜欢使用更大的batch来训练我的模型,因为它允许从gpu的并行性中提高计算速度。但是,众所周知,batch太大会导致泛化效果不好。在一个极端下,使用一个等于整个数据集的batch将保证收敛到目标函数的全局最优。但是这是以收敛到最优值较慢为代价的。另一方面,使用更小的batch已被证明能够更快的收敛到好的结果。这可以直观地解释为,较小的batch允许模型在必须查看所有数据之前就开始学习。使用较小的batch的缺点是不能保证模型收敛到全局最优。因此,通常建议从小batch开始,通过训练慢慢增加batch大小来加快收敛速度。

我还做了一些数据扩充。数据扩充的实践是增加训练集规模的一种有效方式。训练实例的扩充使网络在训练过程中可以看到更加多样化,仍然具有代表性的数据点。

然后,我创建了一个数据生成器,自动从文件夹中获取数据。Keras为此提供了方便的python生成器函数。

BATCH_SIZE = 16

train_generator = ImageDataGenerator(
        zoom_range=2,  # 设置范围为随机缩放
        rotation_range = 90,
        horizontal_flip=True,  # 随机翻转图片
        vertical_flip=True,  # 随机翻转图片
    )

下一步是构建模型。这可以通过以下3个步骤来描述:

  • 我使用DenseNet201作为训练前的权重,它已经在Imagenet比赛中训练过了。设置学习率为0.0001。

  • 在此基础上,我使用了globalaveragepooling层和50%的dropout来减少过拟合。

  • 我使用batch标准化和一个以softmax为激活函数的含有2个神经元的全连接层,用于2个输出类的良恶性。

  • 我使用Adam作为优化器,使用二元交叉熵作为损失函数。

    def build_model(backbone, lr=1e-4):
        model = Sequential()
        model.add(backbone)
        model.add(layers.GlobalAveragePooling2D())
        model.add(layers.Dropout(0.5))
        model.add(layers.BatchNormalization())
        model.add(layers.Dense(2, activation='softmax'))
        
    
        model.compile(
            loss='binary_crossentropy',
            optimizer=Adam(lr=lr),
            metrics=['accuracy']
        )
        return model
    
    resnet = DenseNet201(
        weights='imagenet',
        include_top=False,
        input_shape=(224,224,3)
    )
    
    model = build_model(resnet ,lr = 1e-4)
    model.summary()
    

让我们看看每个层中的输出形状和参数。

在这里插入图片描述
在训练模型之前,定义一个或多个回调函数很有用。非常方便的是:ModelCheckpoint和ReduceLROnPlateau。

  • ModelCheckpoint:当训练通常需要多次迭代并且需要大量的时间来达到一个好的结果时,在这种情况下,ModelCheckpoint保存训练过程中的最佳模型。

  • ReduceLROnPlateau:当度量停止改进时,降低学习率。一旦学习停滞不前,模型通常会从将学习率降低2-10倍。这个回调函数会进行监视,如果在’patience’(耐心)次数下,模型没有任何优化的话,学习率就会降低。

在这里插入图片描述

该模型我训练了60个epoch。

learn_control = ReduceLROnPlateau(monitor='val_acc', patience=5,
                                  verbose=1,factor=0.2, min_lr=1e-7)

filepath="weights.best.hdf5"
checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')

history = model.fit_generator(
    train_generator.flow(x_train, y_train, batch_size=BATCH_SIZE),
    steps_per_epoch=x_train.shape[0] / BATCH_SIZE,
    epochs=20,
    validation_data=(x_val, y_val),
    callbacks=[learn_control, checkpoint]
)

6 分析指标

评价模型性能最常用的指标是精度。然而,当您的数据集中只有2%属于一个类(恶性),98%属于其他类(良性)时,错误分类的分数就没有意义了。你可以有98%的准确率,但仍然没有发现恶性病例,即预测的时候全部打上良性的标签,这是一个不好的分类器。

history_df = pd.DataFrame(history.history)
history_df[['loss', 'val_loss']].plot()

history_df = pd.DataFrame(history.history)
history_df[['acc', 'val_acc']].plot()

在这里插入图片描述

6.1 精度,召回率和F1度量

为了更好地理解错误分类,我们经常使用以下度量来更好地理解真正例(TP)、真负例(TN)、假正例(FP)和假负例(FN)。

精度反映了被分类器判定的正例中真正的正例样本的比重。

召回率反映了所有真正为正例的样本中被分类器判定出来为正例的比例。

F1度量是准确率和召回率的调和平均值。

在这里插入图片描述

6.2 混淆矩阵

混淆矩阵是分析误分类的一个重要指标。矩阵的每一行表示预测类中的实例,而每一列表示实际类中的实例。对角线表示已正确分类的类。这很有帮助,因为我们不仅知道哪些类被错误分类,还知道它们为什么被错误分类。

from sklearn.metrics import classification_report
classification_report( np.argmax(Y_test, axis=1), np.argmax(Y_pred_tta, axis=1))

from sklearn.metrics import confusion_matrix

def plot_confusion_matrix(cm, classes,
                          normalize=False,
                          title='Confusion matrix',
                          cmap=plt.cm.Blues):
    if normalize:
        cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
        print("Normalized confusion matrix")
    else:
        print('Confusion matrix, without normalization')

    print(cm)

    plt.imshow(cm, interpolation='nearest', cmap=cmap)
    plt.title(title)
    plt.colorbar()
    tick_marks = np.arange(len(classes))
    plt.xticks(tick_marks, classes, rotation=55)
    plt.yticks(tick_marks, classes)
    fmt = '.2f' if normalize else 'd'
    thresh = cm.max() / 2.
    for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
        plt.text(j, i, format(cm[i, j], fmt),
                 horizontalalignment="center",
                 color="white" if cm[i, j] > thresh else "black")

    plt.ylabel('True label')
    plt.xlabel('Predicted label')
    plt.tight_layout()

cm = confusion_matrix(np.argmax(Y_test, axis=1), np.argmax(Y_pred, axis=1))

cm_plot_label =['benign', 'malignant']
plot_confusion_matrix(cm, cm_plot_label, title ='Confusion Metrix for Skin Cancer')

在这里插入图片描述

7 结果和结论

在这里插入图片描述
在这个博客中,学长我演示了如何使用卷积神经网络和迁移学习从一组显微图像中对良性和恶性乳腺癌进行分类,希望对大家有所帮助。

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1109491.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

10_18Qt

头文件 #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include<QMovie> #include<QDebug> QT_BEGIN_NAMESPACE namespace Ui { class Widget; } QT_END_NAMESPACEclass Widget : public QWidget {Q_OBJECTpublic:Widget(QWidget *parent nullptr)…

35 机器学习(三):混淆矩阵|朴素贝叶斯|决策树|随机森林

文章目录 分类模型的评估混淆矩阵精确率和召回率 接口介绍其他的补充 朴素贝叶斯基础原理介绍拉普拉斯平滑下面给出应用的例子朴素贝叶斯的思辨 决策树基础使用基本原理信息熵信息增益信息增益率Gini指数 剪枝api介绍 随机森林------集成学习初识基本使用api介绍 分类模型的评估…

基础设施SIG月度动态:T-One 社区版调度引擎全量替换至 runnerV2 版本,调度性能平均提升 6.8 倍

基础设施 SIG&#xff08;OpenAnolis Infra SIG&#xff09;目标&#xff1a;负责 OpenAnolis 社区基础设施工程平台的建设&#xff0c;包括官网、Bugzilla、Maillist、ABS、ANAS、CI 门禁以及社区 DevOps 相关的研发工程系统。 01 SIG 整体进展 1.官网 SIG 外链跳转增加确认…

List执行remove操作间歇性报错UnsupportedOperationException

废话不多说&#xff0c;直接上一个代码&#xff0c;意思很简单&#xff0c;就是把list中的"全部"置顶&#xff0c;但是不知道怎么会偶发报错。 List<UserDept> voList new ArrayList<>(userGroupService.findByName(groupName));for(UserDept userDept…

点云相关内容总结

点云相关内容总结 地形相关内容1. 机载点云地面点和非地面点识别 地形相关内容 1. 机载点云地面点和非地面点识别 识别场景中的梯度较大的区域&#xff0c;进行渐进三角网滤波&#xff0c;梯度大的地方补一下初始地面点 与其他软件相关算法结果进行对比 软件1 三角网滤波算…

塑料透光率测试可测试塑料部件的透明度和纯度

随着电子设备的快速发展&#xff0c;尤其是智能手机、平板电脑、可穿戴设备等新兴产品的普及&#xff0c;对塑料材料的需求量也在逐渐增加。因为这些电子设备需要大量的塑料材料来制造外壳、内部结构、部件等。电子设备在塑料行业的发展迅速&#xff0c;推动了塑料材料的技术进…

什么是低代码开发?低代码开发平台哪个更好?

什么是低代码开发&#xff1f; 有人觉得低代码只是个概念&#xff0c;一无是处&#xff1b; 有人将低代码吹上了天&#xff0c;将其送上神坛&#xff1b; 那么我们先来看看低代码开发是什么。 低代码开发&#xff08;Low-Code&#xff09;顾名思义&#xff0c;是以少量的代码…

铁威马新品F2-212上线,全新设计,极致使用体验

铁威马&#xff0c;作为国民专业级NAS&#xff0c;在过去的十多年里始终专注于存储技术的开发升级&#xff0c;旨在为用户提供全面、可靠且值得信赖的数据存储产品和解决方案。铁威马现在的产品线涵盖了2、4、5、6、8、9、12、16盘位等多种选择&#xff0c;不仅配置高端&#x…

海外问卷调查加盟可靠吗?

海外问卷调查加盟是可靠的&#xff0c;因为这本身就是一个稳定、长期的网络项目&#xff0c;已经存在十几年的时间了&#xff0c;一直都有人在靠它吃饭。 大家好&#xff0c;我是橙河老师&#xff0c;今天讲一讲海外问卷调查加盟可靠吗&#xff1f; 有许多朋友都曾尝试做过一…

Unity插件-Cinemachine

1.Virtual Camera 相机控制 创建Virtual Camera&#xff1a;鼠标右键&#xff08;或点击上方的GameObject&#xff09;-> Cinemachine -> Virtual Camera&#xff0c;创建完Virtual Camera后会发现场景原相机上会自动添加一个CinemachineBrain的组件 CinemachineBrain是…

程序员各阶段应该掌握的技术与能力

人人都是产品经理 | 产品经理、产品爱好者学习交流平台 (woshipm.com)

web前端基础CSS------美化页面“footer”部分

一&#xff0c;实验代码 <!DOCTYPE html> <html><head><meta charset"utf-8"><title>关于我们</title><style type"text/css">#footer{margin: 10px 0px;background: #f5f5f5;border: top 1px solid #eee ;}#f…

微信小程序componentPlaceholder解决分包后不同包组件调用报错问题

这里 我做了个分包的环境 为了演示 只分类 AB两个包 然后呢 A包的 page用了B包的组件 组件肯定是没问题 但是我们运行到A包page的代码 这里会报错 告诉你找不到 很简单 在调用组件的地方 "componentPlaceholder": {"组件代理名":"view"}然后…

教育课堂小程序,三分钟打造专属小程序 带完整搭建教程

大家好哇&#xff0c;今天来给大家分享一款教育课堂小程序。现如今&#xff0c;线上教育已经普及&#xff0c;在大学课堂里&#xff0c;老师尝尝是使用各种各样的学习APP进行点名&#xff0c;签到&#xff0c;答题&#xff0c;考试等等&#xff0c;相较于传统的APP来说&#xf…

C语言--冒泡排序和简答选择排序

冒泡排序 一种典型的交换排序 类似水冒泡&#xff0c;大元素经不断的交换由水底慢慢的浮出 从头到尾&#xff0c;循环比较两相邻的元素 大的元素移到后面&#xff0c;小的放前面-每次循环&#xff0c;大的元素会排到最后 代码如下&#xff1a; #include<stdio.h> …

RK3568笔记三:部署ResNet50模型

若该文为原创文章&#xff0c;转载请注明原文出处。 通过ResNet50网络训练了识别10类车的模型并成功了转换成了onnx模型 具体训练过程可以参考文章AI项目十七&#xff1a;ResNet50训练部署教程-CSDN博客 这里部署使用rknn-toolkit2工具转换成RKNN模型并测试 rknn-toolkit2工…

12款SCADA软件功能比较

数据采集​​软件 SCADA是可用于监控工厂运营或工业流程的软件。通过使用SCADA软件&#xff0c;我们可以将硬件和软件结合起来&#xff0c;组成一个更好的控制系统。为了改进工业过程或纠正过程故障&#xff0c;SCADA 会将所需的命令信号发送到 PLC 或 RTU&#xff0c;这些设备…

大模型发展进入深水区,企业如何打造专属AI原生应用?

目录 &#x1f4e2;前言 大模型发展进入深水区&#xff0c;企业如何打造专属AI原生应用&#xff1f;一、人工智能领域发展现状及行业特点二、百度GBI 的诞生三、百度GBI的特点和优势四、百度GBI的作用及应用场景五、 重磅发布“千帆AI原生应用开发工作台”六、千帆AI原生应用开…

亿赛通电子文档安全管理系统 Update.jsp SQL注入

目录 0x01 漏洞介绍 0x02 影响产品 0x03 语法特征 0x04 漏洞复现页面 0x05 漏洞修复建议 0x01 漏洞介绍 亿赛通电子文档安全管理系统是国内最早基于文件过滤驱动技术的文档加解密产品之一&#xff0c;保护范围涵盖终端电脑&#xff08;Windows、Mac、Linux系统平台&#…

跬智信息(Kyligence)入选 IDC《中国数据智能市场生态图谱V4.0》

近日&#xff0c;IDC 咨询正式发布了《中国数据智能市场生态图谱V4.0》&#xff0c;该报告深入分析了当前中国数据智能市场的综合状况和市场格局。作为领先的大数据分析和指标平台供应商&#xff0c;跬智信息&#xff08;Kyligence&#xff09;凭借在 Data AI 领域的长期技术积…