06-Redis缓存设计与性能优化

news2024/11/19 23:42:04

多级缓存架构
在这里插入图片描述
缓存设计

缓存穿透
缓存穿透是指查询一个根本不存在的数据, 缓存层和存储层都不会命中, 通常出于容错的考虑, 如果从存储层查不到数据则不写入缓存层。
缓存穿透将导致不存在的数据每次请求都要到存储层去查询, 失去了缓存保护后端存储的意义。
造成缓存穿透的基本原因有两个:
第一, 自身业务代码或者数据出现问题。
第二, 一些恶意攻击、 爬虫等造成大量空命中。

缓存穿透问题解决方案:
1、缓存空对象
2、布隆过滤器

package com.ys.rediscluster.bloomfilter.redisson;

import org.redisson.Redisson;
import org.redisson.api.RBloomFilter;
import org.redisson.api.RedissonClient;
import org.redisson.config.Config;

public class RedissonBloomFilter {

    public static void main(String[] args) {
        Config config = new Config();
        config.useSingleServer().setAddress("redis://192.168.14.104:6379");
        config.useSingleServer().setPassword("123");
        //构造Redisson
        RedissonClient redisson = Redisson.create(config);

        RBloomFilter<String> bloomFilter = redisson.getBloomFilter("phoneList");
        //初始化布隆过滤器:预计元素为100000000L,误差率为3%
        bloomFilter.tryInit(100000000L,0.03);
        //将号码10086插入到布隆过滤器中
        bloomFilter.add("10086");

        //判断下面号码是否在布隆过滤器中
        System.out.println(bloomFilter.contains("123456"));//false
        System.out.println(bloomFilter.contains("10086"));//true
    }
}

对于恶意攻击,向服务器请求大量不存在的数据造成的缓存穿透,还可以用布隆过滤器先做一次过滤,对于不存在的数据布隆过滤器一般都能够过滤掉,不让请求再往后端发送。当布隆过滤器说某个值存在时,这个值可能不存在;当它说不存在时,那就肯定不存在。
在这里插入图片描述
布隆过滤器就是一个大型的位数组和几个不一样的无偏 hash 函数。所谓无偏就是能够把元素的 hash 值算得比较均匀。
向布隆过滤器中添加 key 时,会使用多个 hash 函数对 key 进行 hash 算得一个整数索引值然后对位数组长度进行取模运算得到一个位置,每个 hash 函数都会算得一个不同的位置。再把位数组的这几个位置都置为 1 就完成了 add 操作。

向布隆过滤器询问 key 是否存在时,跟 add 一样,也会把 hash 的几个位置都算出来,看看位数组中这几个位置是否都为 1,只要有一个位为 0,那么说明布隆过滤器中这个key 不存在。如果都是 1,这并不能说明这个key 就一定存在,只是极有可能存在,因为这些位被置为 1 可能是因为其它的 key 存在所致。如果这个位数组比较稀疏,这个概率就会很大,如果这个位数组比较拥挤,这个概率就会降低。这种方法适用于数据命中不高、 数据相对固定、 实时性低(通常是数据集较大) 的应用场景, 代码维护较为复杂, 但是缓存空间占用很少。

使用布隆过滤器需要把所有数据提前放入布隆过滤器,并且在增加数据时也要往布隆过滤器里放,
注意:
布隆过滤器不能删除数据,如果要删除得重新初始化数据。

缓存失效(击穿)
由于大批量缓存在同一时间失效可能导致大量请求同时穿透缓存直达数据库,可能会造成数据库瞬间压力过大甚至挂掉,对于这种情况我们在批量增加缓存时最好将这一批数据的缓存过期时间设置为一个时间段内的不同时间。

缓存雪崩
缓存雪崩指的是缓存层支撑不住或宕掉后, 流量会像奔逃的野牛一样, 打向后端存储层。

由于缓存层承载着大量请求, 有效地保护了存储层, 但是如果缓存层由于某些原因不能提供服务(比如超大并发过来,缓存层支撑不住,或者由于缓存设计不好,类似大量请求访问bigkey,导致缓存能支撑的并发急剧下降), 于是大量请求都会打到存储层, 存储层的调用量会暴增, 造成存储层也会级联宕机的情况。

预防和解决缓存雪崩问题, 可以从以下三个方面进行着手。
1) 保证缓存层服务高可用性,比如使用Redis Sentinel或Redis Cluster。
2) 依赖隔离组件为后端限流熔断并降级。比如使用Sentinel或Hystrix限流降级组件。
比如服务降级,我们可以针对不同的数据采取不同的处理方式。当业务应用访问的是非核心数据(例如电商商品属性,用户信息等)时,暂时停止从缓存中查询这些数据,而是直接返回预定义的默认降级信息、空值或是错误提示信息;当业务应用访问的是核心数据(例如电商商品库存)时,仍然允许查询缓存,如果缓存缺失,也可以继续通过数据库读取。
3) 提前演练。 在项目上线前, 演练缓存层宕掉后, 应用以及后端的负载情况以及可能出现的问题, 在此基础上做一些预案设定。

热点缓存key重建优化
开发人员使用“缓存+过期时间”的策略既可以加速数据读写, 又保证数据的定期更新, 这种模式基本能够满足绝大部分需求。 但是有两个问题如果同时出现, 可能就会对应用造成致命的危害:
1:当前key是一个热点key(例如一个热门的娱乐新闻),并发量非常大。
2:重建缓存不能在短时间完成, 可能是一个复杂计算, 例如复杂的SQL、 多次IO、 多个依赖等。
在缓存失效的瞬间, 有大量线程来重建缓存, 造成后端负载加大, 甚至可能会让应用崩溃。
要解决这个问题主要就是要避免大量线程同时重建缓存。
我们可以利用互斥锁来解决,此方法只允许一个线程重建缓存, 其他线程等待重建缓存的线程执行完, 重新从缓存获取数据即可

缓存与数据库双写不一致
在大并发下,同时操作数据库与缓存会存在数据不一致性问题。
在这里插入图片描述
在这里插入图片描述
解决方案:
1、对于并发几率很小的数据(如个人维度的订单数据、用户数据等),这种几乎不用考虑这个问题,很少会发生缓存不一致,可以给缓存数据加上过期时间,每隔一段时间触发读的主动更新即可。
2、就算并发很高,如果业务上能容忍短时间的缓存数据不一致(如商品名称,商品分类菜单等),缓存加上过期时间依然可以解决大部分业务对于缓存的要求。
3、如果不能容忍缓存数据不一致,可以通过加读写锁保证并发读写或写写的时候按顺序排好队,读读的时候相当于无锁。
4、也可以用阿里开源的canal通过监听数据库的binlog日志及时的去修改缓存,但是引入了新的中间件,增加了系统的复杂度。
在这里插入图片描述

总结:
以上我们针对的都是读多写少的情况加入缓存提高性能,如果写多读多的情况又不能容忍缓存数据不一致,那就没必要加缓存了,可以直接操作数据库。放入缓存的数据应该是对实时性、一致性要求不是很高的数据。切记不要为了用缓存,同时又要保证绝对的一致性做大量的过度设计和控制,增加系统复杂性!

bigkey的危害:
1.导致redis阻塞
2.网络拥塞
bigkey也就意味着每次获取要产生的网络流量较大,假设一个bigkey为1MB,客户端每秒访问量为1000,那么每秒产生1000MB的流量,对于普通的千兆网卡(按照字节算是128MB/s)的服务器来说简直是灭顶之灾,而且一般服务器会采用单机多实例的方式来部署,也就是说一个bigkey可能会对其他实例也造成影响,其后果不堪设想。
3. 过期删除
有个bigkey,它安分守己(只执行简单的命令,例如hget、lpop、zscore等),但它设置了过期时间,当它过期后,会被删除,如果没有使用Redis 4.0的过期异步删除(lazyfree-lazyexpire yes),就会存在阻塞Redis的可能性。

bigkey的产生:
一般来说,bigkey的产生都是由于程序设计不当,或者对于数据规模预料不清楚造成的,来看几个例子:
(1) 社交类:粉丝列表,如果某些明星或者大v不精心设计下,必是bigkey。
(2) 统计类:例如按天存储某项功能或者网站的用户集合,除非没几个人用,否则必是bigkey。
(3) 缓存类:将数据从数据库load出来序列化放到Redis里,这个方式非常常用,但有两个地方需要注意,第一,是不是有必要把所有字段都缓存;第二,有没有相关关联的数据,有的同学为了图方便把相关数据都存一个key下,产生bigkey。

Redis对于过期键有三种清除策略:

  1. 被动删除:当读/写一个已经过期的key时,会触发惰性删除策略,直接删除掉这个过期key
  2. 主动删除:由于惰性删除策略无法保证冷数据被及时删掉,所以Redis会定期主动淘汰一批已过期的key
  3. 当前已用内存超过maxmemory限定时,触发主动清理策略

主动清理策略
a) 针对设置了过期时间的key做处理:
4. volatile-ttl:在筛选时,会针对设置了过期时间的键值对,根据过期时间的先后进行删除,越早过期的越先被删除。
5. volatile-random:就像它的名称一样,在设置了过期时间的键值对中,进行随机删除。
6. volatile-lru:会使用 LRU 算法筛选设置了过期时间的键值对删除。
7. volatile-lfu:会使用 LFU 算法筛选设置了过期时间的键值对删除。
b) 针对所有的key做处理:
8. allkeys-random:从所有键值对中随机选择并删除数据。
9. allkeys-lru:使用 LRU 算法在所有数据中进行筛选删除。
10. allkeys-lfu:使用 LFU 算法在所有数据中进行筛选删除。
c) 不处理:
11. noeviction:不会剔除任何数据,拒绝所有写入操作并返回客户端错误信息"(error)
OOM command not allowed when used memory",此时Redis只响应读操作。

LRU 算法(Least Recently Used,最近最少使用)
淘汰很久没被访问过的数据,以最近一次访问时间作为参考

LFU 算法(Least Frequently Used,最不经常使用)
淘汰最近一段时间被访问次数最少的数据,以次数作为参考。

当存在热点数据时,LRU的效率很好,但偶发性的、周期性的批量操作会导致LRU命中率急剧下降,缓存污染情况比较严重。这时使用LFU可能更好点。

根据自身业务类型,配置好maxmemory-policy(默认是noeviction),推荐使用volatile-lru。如果不设置最大内存,当 Redis 内存超出物理内存限制时,内存的数据会开始和磁盘产生频繁的交换 (swap),会让 Redis 的性能急剧下降。
当Redis运行在主从模式时,只有主结点才会执行过期删除策略,然后把删除操作”del key”同步到从结点删除数据。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/110679.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

基于多级适应方法的无人机(UAV)在发动机输出情况下的导航和路径规划(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

【SwinTransformer】GitHub源码,main.py,swin_transformer.py...

声明:仅学习使用~ “我们抬头便看到星光,星星却穿越了万年”。 Contents 数据与环境配置解读main.pyswin_transformer.py数据与环境配置解读 来看 SwinTransformer 的github官网。已经开源了。(想不到在家里居然可以直接上GItHub,真好啊!) 进去后可以看到如下界面: I…

Windows tensorflow、keras虚拟环境搭建记录(使用conda和mamba)

Windows tensorflow、keras虚拟环境搭建记录 过程记录 首先创建虚拟环境 注意如果之前把conda镜像源配置到了国内&#xff0c;那这一步就不要挂梯子&#xff0c;否则会报出这种错误 conda create --name TF python3.5.2TF那里是给虚拟环境取个名字python后面指定版本号&#x…

103.(leaflet之家)leaflet态势标绘-聚集地绘制

地图之家总目录(订阅之前请先查看该博客) 地图之家:cesium+leaflet+echart+地图数据+地图工具等相关内容的介绍 文章末尾处提供保证可运行完整代码包,运行如有问题,可“私信”博主。 效果如下所示: 下面献上完整代码,代码重要位置会做相应解释 <!DOCTYPE html>…

一文带你看透空气质量

空气质量的好坏反映了空气污染程度&#xff0c;它是依据空气中污染物浓度的高低来判断的。空气污染是一个复杂的现象&#xff0c;在特定时间和地点空气污染物浓度受到许多因素影响。来自固定和流动污染源的人为污染物排放大小是影响空气质量的最主要因素之一&#xff0c;其中包…

【MySQL入门实战3】-存储引擎

&#x1f4e2;&#x1f4e2;&#x1f4e2;&#x1f4e3;&#x1f4e3;&#x1f4e3; 哈喽&#xff01;大家好&#xff0c;我是【IT邦德】&#xff0c;江湖人称jeames007&#xff0c;10余年DBA工作经验 一位上进心十足的【大数据领域博主】&#xff01;&#x1f61c;&#x1f61…

【K8S系列】第十三讲:Ingress详解

目录 序言 1.Ingress基本介绍 1.1 暴露服务问题 1.2 什么是Ingress 1.2 Ingress的核心组件 1.2.1 ingress 1.2.2 ingress-controller 1.2.3 反向代理负载均衡器 2.安装 2.1 下载/修改配置文件 2.2 安装资源 2.3 结果 2.4 项目示例 2.4.1 创建service及deploymen…

博德宝闪耀回归,九牧国际化提速

文|螳螂观察 作者|陈小江 怎样让厨房变得更好&#xff1f; 这是德国百年奢华橱柜品牌博德宝1892年创立之初&#xff0c;就在思考的问题&#xff0c;也是其品牌主张。 130年来&#xff0c;关于该问题的答案&#xff0c;随着博德宝不断创新在时刻刷新&#xff0c;并在全球引领…

Sentinel

Sentinel—高可用流量管理框架/服务容错组件 一.为什么要用Sentinel? 1.微服务架构中当某服务挂掉的时候常见的原因有哪些&#xff1f; 1.异常没处理 比如DB连接失败&#xff0c;文件读取失败等 2.突然的流量激增 比如&#xff1a;用户经常会在京东、淘宝、天猫、拼多多…

java 三级缓存

&#x1f3c6;今日学习目标&#xff1a; &#x1f340;java 三级缓存 ✅创作者&#xff1a;林在闪闪发光 ⏰预计时间&#xff1a;30分钟 &#x1f389;个人主页&#xff1a;林在闪闪发光的个人主页 &#x1f341;林在闪闪发光的个人社区&#xff0c;欢迎你的加入: 林在闪闪发光…

五问补盲(四)| 好用的补盲激光雷达,得满足哪些条件?

作者 | 爱LiDAR的小飞哥 编辑 | 王博上一期&#xff0c;我们聊了补盲激光雷达上车的重要前提——安全。本期我们来聊聊&#xff0c;满足功能安全、网络安全等领域的关键设计要求之后&#xff0c;补盲激光雷达怎么做到好用&#xff0c;更贴近工程化的表述是「易用」。在之前的文…

利器 | 接口自动化测试框架 RESTAssured 实践(三):对 Response 结果导出

上一篇文章中介绍了rest-assured对返回结果的断言&#xff0c;最后说明了对于Response结果导出的需求。可查看往期文章进行查看。 HTTP/1.1 200 OK Server: nginx/1.12.2 Date: Mon, 13 Jan 2020 02:15:11 GMT Content-Type: application/json;charsetUTF-8 Transfer-Encoding…

产险精算GLM案例

这是对北美产险精算学会CAS北美产险精算师考试教材《广义线性模型实践者指南》的第一章中的实例的结果验证&#xff0c;教材中使用的是纯数学理论推导&#xff0c;这里使用python进行结果验证。 原始数据是一个简单的分组数据&#xff1a; 这个原始数据表需要进行结构化后&…

前端基础(十七)_HTML5新特性

HTML5新特性 1、在网页上绘制图形的canvas元素 原生JavaScriptcanvas实现五子棋游戏_值得一看 鼠标移动淡入淡出Canvas小球效果_TS版本 JS配合canvas实现贪吃蛇小游戏 canvas基础及太极图案例 2、多媒体相关video和audio元素 html5 video 音频标签: audio 标签 在IE8及更早版本…

LVGL学习笔记1 - 准备

目录 1. 下载LVGL源代码 2. 平台 3. 导入到工程 3.1 配置头文件 3.2 src文件夹 4. 移植 4.1 显示接口部分 4.1.1 disp_init 4.1.2 lv_port_disp_init 4.1.3 disp_flush 4.2 IPA部分 4.2.1 lv_draw_gd32_ipa_init 4.2.2 lv_draw_gd32_ipa_blend_fill 4.2.3 lv_dra…

Web API节点操作

1、节点概述 网页中的所有内容都是节点&#xff08;标签、属性、文本、注释等&#xff09;&#xff0c;在DOM 中&#xff0c;节点使用 node 来表示。HTML DOM 树中的所有节点均可通过 JavaScript 进行访问&#xff0c;所有 HTML 元素&#xff08;节点&#xff09;均可被修改&a…

(JavaP1177 )【模板】快速排序

【模板】快速排序 一、题目描述 利用快速排序算法将读入的 NNN 个数从小到大排序后输出。 快速排序是信息学竞赛的必备算法之一。对于快速排序不是很了解的同学可以自行上网查询相关资料&#xff0c;掌握后独立完成。&#xff08;C 选手请不要试图使用 STL&#xff0c;虽然你…

认识信道(零):天线的极化

认识信道(零)&#xff1a;天线的极化 文章目录认识信道(零)&#xff1a;天线的极化零.简述一.平面电磁波的传播二.对于field pattern的研究三.对于传播路程的研究四.极化失配五.传播结果六.QuaDRiGa Tutorial分析TXV-RXVTX45-RXV和 TXV-RX45TX45-RX45TX90-RX0&#xff0c;45&am…

[Linux]-Crontab定时任务

[Linux]-Crontab定时任务 森格 | 2022年12月 本文是对Linux中的定时任务Crontab的介绍 一、Crontab是什么 crontab命令常见于Unix和类Unix的操作系统之中&#xff0c;用于设置周期性被执行的指令。该命令从标准输入设备读取指令&#xff0c;并将其存放于“crontab”文件中&…

APP登录界面设计:注册框 or 登录框,哪个更合理?

登录和注册过程往往是产品和用户的 First Sight&#xff0c;因此登录注册入口是给用户留下好的第一印象的关键。遵循“所有的设计都应有据可循”的原则&#xff0c;下面是我司设计团队对“登录界面该放注册框还是登录框这个问题”的探讨。 对于一般需要账号体系的产品&#xff…