
 请你仅使用两个栈实现先入先出队列。队列应当支持一般队列支持的所有操作(push、pop、peek、empty):
 实现 MyQueue 类:
 void push(int x) 将元素 x 推到队列的末尾
 int pop() 从队列的开头移除并返回元素
 int peek() 返回队列开头的元素
 boolean empty() 如果队列为空,返回 true ;否则,返回 false
 说明:
 你 只能 使用标准的栈操作 —— 也就是只有 push to top, peek/pop from top, size, 和 is empty 操作是合法的。
 你所使用的语言也许不支持栈。你可以使用 list 或者 deque(双端队列)来模拟一个栈,只要是标准的栈操作即可
 示例 1:
 输入:
 [“MyQueue”, “push”, “push”, “peek”, “pop”, “empty”]
 [[], [1], [2], [], [], []]
 输出:
 [null, null, null, 1, 1, false]
 解释:
 MyQueue myQueue = new MyQueue();
 myQueue.push(1); // queue is: [1]
 myQueue.push(2); // queue is: [1, 2] (leftmost is front of the queue)
 myQueue.peek(); // return 1
 myQueue.pop(); // return 1, queue is [2]
 myQueue.empty(); // return false
 将一个栈当作输入栈,用于压入 push 传入的数据;另一个栈当作输出栈,用于 pop和 peek 操作
 每次 pop或 peek 时,若输出栈为空则将输入栈的全部数据依次弹出并压入输出栈,这样输出栈从栈顶往栈底的顺序就是队列从队首往队尾的顺序
 
typedef int STDataType; 
typedef struct Stack
{
	STDataType* a;
	int top;
	int capacity;
}ST;
void STInit(ST* ps);
void STDestroy(ST* ps);
void STPush(ST* ps, STDataType x);
void STPop(ST* ps);
STDataType STSize(ST* ps);
bool STEmpty(ST* ps);
STDataType STTop(ST* ps);
void STInit(ST* ps)
{
	assert(ps);
	ps->a = NULL; 
	ps->capacity = 0;
	ps->top = 0;
}
void STDestroy(ST* ps)
{
	assert(ps);
	free(ps->a);
	ps->a=NULL;
	ps->top = ps->capacity = 0;
}
void STPush(ST* ps, STDataType x)
{
	assert(ps);
	if (ps->top == ps->capacity)
	{
		int newCapacity = ps->capacity == 0 ? 4 : ps->capacity * 2;
		STDataType* tmp = (STDataType*)realloc(ps->a,
			sizeof(STDataType) * newCapacity);
		if (tmp == NULL)
		{
			perror("realloc fail");
			exit(-1);
		}
		ps->a = tmp; 
		ps->capacity = newCapacity;
	}
	ps->a[ps->top] = x;
	ps->top++;
}
void STPop(ST* ps)
{
	assert(ps);
	assert(ps->top > 0);
	--ps->top;
}
STDataType STTop(ST* ps)
{
	assert(ps);
	assert(ps->top > 0);
	return ps->a[ps->top - 1];
}
STDataType STSize(ST* ps)/*.....*/
{
	assert(ps);
	return ps->top;
}
bool STEmpty(ST* ps)
{
	assert(ps);
	return ps->top ==0;//0;
}
typedef struct {
    ST Pushst;
    ST Popst;
} MyQueue;
MyQueue* myQueueCreate() {
    MyQueue*obj=(MyQueue*)malloc(sizeof(MyQueue));
		STInit(&obj->Pushst);
		STInit(&obj->Popst);
		return obj;
}
void myQueuePush(MyQueue* obj, int x) {
	STPush(&obj->Pushst, x);
}
int myQueuePop(MyQueue* obj) {
	int front=myQueuePeek(obj);
	STPop(&obj->Popst);
	return front;
}
int myQueuePeek(MyQueue* obj) {
	if(STEmpty(&obj->Popst)){
	while(!STEmpty(&obj->Pushst)){
		STPush(&obj->Popst,STTop(&obj->Pushst));
		STPop(&obj->Pushst);
		}
	}
	return STTop(&obj->Popst);
}
bool myQueueEmpty(MyQueue* obj) {
	return STEmpty(&obj->Popst)&&STEmpty(&obj->Pushst);
}
void myQueueFree(MyQueue* obj) {
	STDestroy(&obj->Popst);
	STDestroy(&obj->Pushst);
	free(obj);
}
/**
 * Your MyQueue struct will be instantiated and called as such:
 * MyQueue* obj = myQueueCreate();
 * myQueuePush(obj, x);
 
 * int param_2 = myQueuePop(obj);
 
 * int param_3 = myQueuePeek(obj);
 
 * bool param_4 = myQueueEmpty(obj);
 
 * myQueueFree(obj);
*/

















![[架构之路-238]:目标系统 - 纵向分层 - 网络通信 - 网络规划与设计框架](https://img-blog.csdnimg.cn/40fd6973ef404b59bd5fb31bc3ece5e8.png)

