回溯算法理论基础
#题目分类
#理论
#什么是回溯法
回溯法也可以叫做回溯搜索法,它是一种搜索的方式。
在二叉树系列中,不止一次提到了回溯,例如二叉树:以为使用了递归,其实还隐藏着回溯 (opens new window)。
回溯是递归的副产品,只要有递归就会有回溯。
以下讲解中,回溯函数也就是递归函数,指的都是一个函数。
#回溯法的效率
回溯法的性能如何呢,虽然回溯法很难,很不好理解,但是回溯法并不是什么高效的算法。
因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案,如果想让回溯法高效一些,可以加一些剪枝的操作,但也改不了回溯法就是穷举的本质。
那么既然回溯法并不高效为什么还要用它呢?
因为没得选,一些问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。
回溯法解决的问题
回溯法,一般可以解决如下几种问题:
- 组合问题:N个数里面按一定规则找出k个数的集合
- 切割问题:一个字符串按一定规则有几种切割方式
- 子集问题:一个N个数的集合里有多少符合条件的子集
- 排列问题:N个数按一定规则全排列,有几种排列方式
- 棋盘问题:N皇后,解数独等等
相信看着这些之后会发现,每个问题,都不简单!
另外,会有一些同学可能分不清什么是组合,什么是排列?
组合是不强调元素顺序的,排列是强调元素顺序。
例如:{1, 2} 和 {2, 1} 在组合上,就是一个集合,因为不强调顺序,而要是排列的话,{1, 2} 和 {2, 1} 就是两个集合了。
记住组合无序,排列有序。
如何理解回溯法
回溯法解决的问题都可以抽象为树形结构,指的是所有回溯法的问题都可以抽象为树形结构!
因为回溯法解决的都是在集合中递归查找子集,集合的大小就构成了树的宽度,递归的深度,都构成的树的深度。
递归就要有终止条件,所以必然是一棵高度有限的树(N叉树)。
回溯法模板
这里给出Carl总结的回溯算法模板。
在讲二叉树的递归 (opens new window)中说了递归三部曲,这里列出回溯三部曲。
- 回溯函数模板返回值以及参数
在回溯算法中,我的习惯是函数起名字为 backtracking ,这个起名大家随意。
回溯算法中函数返回值一般为 void 。
回溯算法需要的参数不容易一次性确定下来,所以一般是先写逻辑,然后需要什么参数,就填什么参数。
回溯函数伪代码如下:
void backtracking(参数)
- 回溯函数终止条件
既然是树形结构,那么在二叉树的递归 (opens new window)的时候,就知道遍历树形结构一定要有终止条件。
所以回溯也有要终止条件。
什么时候达到了终止条件,树中就可以看出,一般来说搜到叶子节点了,也就找到了满足条件的一条答案,把这个答案存放起来,并结束本层递归。
所以回溯函数终止条件伪代码如下:
if (终止条件) {
存放结果;
return;
}
- 回溯搜索的遍历过程
在上面我们提到了,回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。
如图:
注意图中,特意举例集合大小和孩子的数量是相等的!
回溯函数遍历过程伪代码如下:
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
for 循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。
backtracking这里自己调用自己,实现递归。
大家可以从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。
分析完过程,回溯算法模板框架如下:
void backtracking(参数) {
if (终止条件) {
存放结果;
return;
}
for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
处理节点;
backtracking(路径,选择列表); // 递归
回溯,撤销处理结果
}
}
这份模板很重要,后面做回溯法的题目都靠它了!
第77题. 组合
思路
本题是回溯法的经典题目。直接的解法当然是使用for循环。
那么回溯法怎么暴力搜呢?
要解决 n为100,k为50的情况,暴力写法需要嵌套50层for循环,那么回溯法就用递归来解决嵌套层数的问题。
递归来做层叠嵌套(可以理解是开k层for循环),每一次的递归中嵌套一个for循环,那么递归就可以用于解决多层嵌套循环的问题了。
此时递归的层数大家应该知道了,例如:n为100,k为50的情况下,就是递归50层。
我们在关于回溯算法,你该了解这些! (opens new window)中说到回溯法解决的问题都可以抽象为树形结构(N叉树),用树形结构来理解回溯就容易多了。
那么我把组合问题抽象为如下树形结构:
可以看出这棵树,一开始集合是 1,2,3,4, 从左向右取数,取过的数,不再重复取。
第一次取1,集合变为2,3,4 ,因为k为2,我们只需要再取一个数就可以了,分别取2,3,4,得到集合[1,2] [1,3] [1,4],以此类推。
每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围。
图中可以发现n相当于树的宽度,k相当于树的深度。
那么如何在这个树上遍历,然后收集到我们要的结果集呢?
图中每次搜索到了叶子节点,我们就找到了一个结果。
相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。
在关于回溯算法,你该了解这些! (opens new window)中提到了回溯法三部曲,那么按照回溯法三部曲开始正式讲解代码了。
回溯法三部曲
- 递归函数的返回值以及参数
在这里要定义两个全局变量,一个用来存放符合条件单一结果,一个用来存放符合条件结果的集合。
代码如下:
List<List<Integer>> res = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
函数里一定有两个参数,既然是集合n里面取k个数,那么n和k是两个int型的参数。
然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。
为什么要有这个startIndex呢?
建议在77.组合视频讲解 (opens new window)中,07:36的时候开始听,startIndex 就是防止出现重复的组合。
从下图中红线部分可以看出,在集合[1,2,3,4]取1之后,下一层递归,就要在[2,3,4]中取数了,那么下一层递归如何知道从[2,3,4]中取数呢,靠的就是startIndex。
所以需要startIndex来记录下一层递归,搜索的起始位置。
那么整体代码如下:
List<List<Integer>> res = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
void backtracking(int n, int k,int startIndex){
- 回溯函数终止条件
什么时候到达所谓的叶子节点了呢?
path这个数组的大小如果达到k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。
如图红色部分:
此时用result二维数组,把path保存起来,并终止本层递归。
所以终止条件代码如下:
//结束逻辑
if (path.size() == k){
res.add(new ArrayList<>(path));
return;
}
- 单层搜索的过程
回溯法的搜索过程就是一个树型结构的遍历过程,在如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历。
如此我们才遍历完图中的这棵树。
for循环每次从startIndex开始遍历,然后用path保存取到的节点i。
代码如下:
//回溯逻辑
for (int i = startIndex; i <= n - (k - path.size()) +1; i++) {// 控制树的横向遍历
path.add(i);// 处理节点
backtracking(n,k,i+1);// 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
path.removeLast();// 回溯,撤销处理的节点
}
可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。
backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。
整体代码如下:
class Solution {
List<List<Integer>> res = new ArrayList<>();// 存放符合条件结果的集合
LinkedList<Integer> path = new LinkedList<>();// 用来存放符合条件结果
public List<List<Integer>> combine(int n, int k) {
backtracking(n,k,1);
return res;
}
/**
* 每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围,就是要靠startIndex
* @param startIndex 用来记录本层递归的中,集合从哪里开始遍历(集合就是[1,...,n] )。
*/
void backtracking(int n, int k,int startIndex){
//结束逻辑
if (path.size() == k){
res.add(new ArrayList<>(path));
return;
}
//回溯逻辑
for (int i = startIndex; i <= n - (k - path.size()) +1; i++) {// 控制树的横向遍历
path.add(i);// 处理节点
backtracking(n,k,i+1);// 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
path.removeLast();// 回溯,撤销处理的节点
}
}
}
剪枝优化
我们说过,回溯法虽然是暴力搜索,但也有时候可以有点剪枝优化一下的。
在遍历的过程中有如下代码:
//回溯逻辑
for (int i = startIndex; i <= n - (k - path.size()) +1; i++) {// 控制树的横向遍历
path.add(i);// 处理节点
backtracking(n,k,i+1);// 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
path.removeLast();// 回溯,撤销处理的节点
}
这个遍历的范围是可以剪枝优化的,怎么优化呢?
来举一个例子,n = 4,k = 4的话,那么第一层for循环的时候,从元素2开始的遍历都没有意义了。 在第二层for循环,从元素3开始的遍历都没有意义了。
这么说有点抽象,如图所示:
图中每一个节点(图中为矩形),就代表本层的一个for循环,那么每一层的for循环从第二个数开始遍历的话,都没有意义,都是无效遍历。
所以,可以剪枝的地方就在递归中每一层的for循环所选择的起始位置。
如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了。
注意代码中 i ,就是for循环里选择的起始位置。
for (int i = startIndex; i <= n; i++) {
接下来看一下优化过程如下:
-
已经选择的元素个数:path.size();
-
还需要的元素个数为: k - path.size();
-
在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历
为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。
举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。
从2开始搜索都是合理的,可以是组合[2, 3, 4]。
这里大家想不懂的话,建议也举一个例子,就知道是不是要+1了。
所以优化之后的for循环是:
for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置
以上为我做题时候的相关思路,自己的语言组织能力较弱,很多都是直接抄卡哥的,有错误望指正。