使用OpenCV如何确定一个对象的方向

news2024/12/24 21:29:09

在本教程中,我们将构建一个程序,该程序可以使用流行的计算机视觉库 OpenCV 确定对象的方向(即以度为单位的旋转角度)。

最常见的现实世界用例之一是当您想要开发机械臂的取放系统时。确定一个物体在传送带上的方向是确定合适的抓取、捡起物体并将其放置在另一个位置的关键。
请添加图片描述

1.代码实现

接受一个名为input_img.jpg的图像,并输出一个名为output_img.jpg的带标记的图像。部分代码来自官方的OpenCV实现。

import cv2 as cv
from math import atan2, cos, sin, sqrt, pi
import numpy as np
 
def drawAxis(img, p_, q_, color, scale):
  p = list(p_)
  q = list(q_)
 
  ## [visualization1]
  angle = atan2(p[1] - q[1], p[0] - q[0]) # angle in radians
  hypotenuse = sqrt((p[1] - q[1]) * (p[1] - q[1]) + (p[0] - q[0]) * (p[0] - q[0]))
 
  # Here we lengthen the arrow by a factor of scale
  q[0] = p[0] - scale * hypotenuse * cos(angle)
  q[1] = p[1] - scale * hypotenuse * sin(angle)
  cv.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv.LINE_AA)
 
  # create the arrow hooks
  p[0] = q[0] + 9 * cos(angle + pi / 4)
  p[1] = q[1] + 9 * sin(angle + pi / 4)
  cv.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv.LINE_AA)
 
  p[0] = q[0] + 9 * cos(angle - pi / 4)
  p[1] = q[1] + 9 * sin(angle - pi / 4)
  cv.line(img, (int(p[0]), int(p[1])), (int(q[0]), int(q[1])), color, 3, cv.LINE_AA)
  ## [visualization1]
 
def getOrientation(pts, img):
  ## [pca]
  # Construct a buffer used by the pca analysis
  sz = len(pts)
  data_pts = np.empty((sz, 2), dtype=np.float64)
  for i in range(data_pts.shape[0]):
    data_pts[i,0] = pts[i,0,0]
    data_pts[i,1] = pts[i,0,1]
 
  # Perform PCA analysis
  mean = np.empty((0))
  mean, eigenvectors, eigenvalues = cv.PCACompute2(data_pts, mean)
 
  # Store the center of the object
  cntr = (int(mean[0,0]), int(mean[0,1]))
  ## [pca]
 
  ## [visualization]
  # Draw the principal components
  cv.circle(img, cntr, 3, (255, 0, 255), 2)
  p1 = (cntr[0] + 0.02 * eigenvectors[0,0] * eigenvalues[0,0], cntr[1] + 0.02 * eigenvectors[0,1] * eigenvalues[0,0])
  p2 = (cntr[0] - 0.02 * eigenvectors[1,0] * eigenvalues[1,0], cntr[1] - 0.02 * eigenvectors[1,1] * eigenvalues[1,0])
  drawAxis(img, cntr, p1, (255, 255, 0), 1)
  drawAxis(img, cntr, p2, (0, 0, 255), 5)
 
  angle = atan2(eigenvectors[0,1], eigenvectors[0,0]) # orientation in radians
  ## [visualization]
 
  # Label with the rotation angle
  label = "  Rotation Angle: " + str(-int(np.rad2deg(angle)) - 90) + " degrees"
  textbox = cv.rectangle(img, (cntr[0], cntr[1]-25), (cntr[0] + 250, cntr[1] + 10), (255,255,255), -1)
  cv.putText(img, label, (cntr[0], cntr[1]), cv.FONT_HERSHEY_SIMPLEX, 0.5, (0,0,0), 1, cv.LINE_AA)
 
  return angle
 
# Load the image
img = cv.imread("input_img.jpg")
 
# Was the image there?
if img is None:
  print("Error: File not found")
  exit(0)
 
cv.imshow('Input Image', img)
 
# Convert image to grayscale
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
 
# Convert image to binary
_, bw = cv.threshold(gray, 50, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
 
# Find all the contours in the thresholded image
contours, _ = cv.findContours(bw, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)
 
for i, c in enumerate(contours):
 
  # Calculate the area of each contour
  area = cv.contourArea(c)
 
  # Ignore contours that are too small or too large
  if area < 3700 or 100000 < area:
    continue
 
  # Draw each contour only for visualisation purposes
  cv.drawContours(img, contours, i, (0, 0, 255), 2)
 
  # Find the orientation of each shape
  getOrientation(c, img)
 
cv.imshow('Output Image', img)
cv.waitKey(0)
cv.destroyAllWindows()
  
# Save the output image to the current directory
cv.imwrite("output_img.jpg", img)

2.输出图像

请添加图片描述

3.了解坐标轴

红线表示每个物体的正x轴。蓝线表示每个物体的正y轴。
全局正x轴从左到右横贯图像。整体正z轴指向这一页外。全局正y轴从图像的底部垂直指向图像的顶部。
使用右手法则来测量旋转,你将你的四个手指(食指到小指)笔直地指向全局正x轴的方向。
请添加图片描述
然后逆时针旋转四个手指90度。指尖指向y轴正方向,大拇指指向纸外z轴正方向。
请添加图片描述

4.计算0到180度之间的方向

如果我们想计算一个对象的方向,并确保结果总是在0到180度之间,我们可以使用以下代码:

# This programs calculates the orientation of an object.
# The input is an image, and the output is an annotated image
# with the angle of otientation for each object (0 to 180 degrees)
 
import cv2 as cv
from math import atan2, cos, sin, sqrt, pi
import numpy as np
 
# Load the image
img = cv.imread("input_img.jpg")
 
# Was the image there?
if img is None:
  print("Error: File not found")
  exit(0)
 
cv.imshow('Input Image', img)
 
# Convert image to grayscale
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
 
# Convert image to binary
_, bw = cv.threshold(gray, 50, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
 
# Find all the contours in the thresholded image
contours, _ = cv.findContours(bw, cv.RETR_LIST, cv.CHAIN_APPROX_NONE)
 
for i, c in enumerate(contours):
 
  # Calculate the area of each contour
  area = cv.contourArea(c)
 
  # Ignore contours that are too small or too large
  if area < 3700 or 100000 < area:
    continue
 
  # cv.minAreaRect returns:
  # (center(x, y), (width, height), angle of rotation) = cv2.minAreaRect(c)
  rect = cv.minAreaRect(c)
  box = cv.boxPoints(rect)
  box = np.int0(box)
 
  # Retrieve the key parameters of the rotated bounding box
  center = (int(rect[0][0]),int(rect[0][1])) 
  width = int(rect[1][0])
  height = int(rect[1][1])
  angle = int(rect[2])
 
     
  if width < height:
    angle = 90 - angle
  else:
    angle = -angle
         
  label = "  Rotation Angle: " + str(angle) + " degrees"
  textbox = cv.rectangle(img, (center[0]-35, center[1]-25), 
    (center[0] + 295, center[1] + 10), (255,255,255), -1)
  cv.putText(img, label, (center[0]-50, center[1]), 
    cv.FONT_HERSHEY_SIMPLEX, 0.7, (0,0,0), 1, cv.LINE_AA)
  cv.drawContours(img,[box],0,(0,0,255),2)
 
cv.imshow('Output Image', img)
cv.waitKey(0)
cv.destroyAllWindows()
  
# Save the output image to the current directory
cv.imwrite("min_area_rec_output.jpg", img)

请添加图片描述

参考目录

https://automaticaddison.com/how-to-determine-the-orientation-of-an-object-using-opencv/

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1093.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Activiti工作流引擎中责任链模式的建立与应用原理

本文需要一定责任链模式的基础与Activiti工作流知识&#xff0c;主要分成三部分讲解&#xff1a; 一、简单理解责任链模式概念 网上关于责任链模式的介绍很多&#xff0c;菜鸟教程上是这样说的&#xff1a;责任链模式&#xff08;Chain of Responsibility Pattern&#xff09…

操作系统实验二 进程创建

百年传承的实验&#xff0c;看不懂题意就对啦 vim写C代码的时候&#xff0c;记得先insetr键&#xff0c;Esc键后:wq保存。 更改后记得gcc重新编译。 代码显示异常&#xff0c;看评论区。 《操作系统》实验报告 姓名 Rhyme_7 学号 1008611 实验序号 实验二 实验名称 实验…

概率论与数理统计学习:数字特征(一)——知识总结与C语言实现案例

hello&#xff0c;大家好 这里是第十期的概率论与数理统计的学习&#xff0c;我将用这篇博客去总结知识点和用C语言实现案例的过程。 本期知识点——期望 离散型随机变量的期望连续型随机变量的期望随机变量函数的期望期望的性质 &#x1f4a6; 期望的引入 随机变量的分布函…

基于正交对立学习的改进麻雀搜索算法-附代码

基于正交对立学习的改进麻雀搜索算法 文章目录基于正交对立学习的改进麻雀搜索算法1.麻雀优化算法2. 改进麻雀算法2.1 正态变异扰动2.2 对立学习2.3 正交对立学习3.实验结果4.参考文献5.Matlab代码6.Python代码摘要&#xff1a;针对麻雀搜索算法种群多样性少&#xff0c;局部搜…

腾讯云 如何设置mysql允许外部连接访问

大家好&#xff0c;本篇文章主要讲的是如何设置mysql允许外部连接访问&#xff0c;感兴趣的同学赶快来看一看吧&#xff0c;对你有帮助的话记得收藏一下 前置 windows在CMD中登陆MySQL 看到大家都如此我就放心了。。。_云草桑的博客-CSDN博客_cmd登录mysql是不是只能在bin文件…

一种经纬度轨迹数据计算物理弯道的方法,轨迹弯道算法

前言 本文使用了纯数学计算的方法计算识别了轨迹中的弯道位置&#xff0c;整体思路较为简单&#xff0c;不过最终效果十分可观&#xff0c;本算法已经在百万级用户的平台稳定运行&#xff0c;在实现过程中对GPS漂移、连续弯道、回旋弯道进行了处理。不过弯道数据仅供页面展示&a…

c语言的三种基本结构——初学者一定要了解哦

文章目录前言一、顺序结构二、选择结构&#xff08;分支语句&#xff09;1.选择语句之→if语句1.1 if语句的基本结构1.2 if语句之多分支&#xff1a;1.3 if语句的常见错误使用。2.选择语句之→switch语句2.1 switch语句基本结构&#xff1a;2.2 switch语句基本应用2.3 break语句…

Python实现视频自动打码,不用担心透露隐私了

准备工作 环境咱们还是使用 Python3.8 和 pycharm2021 即可 实现原理 将视频分为音频和画面画面中出现人脸和目标比对&#xff0c;相应人脸进行打码处理后的视频添加声音 模块 手动安装一下 cv2 模块 &#xff0c;pip install opencv-python 安装 安装遇到报错&#xff0c…

基于javaweb的校园人力人事资源管理系统(java+springboot+ssm+mysql+jsp)

基于javaweb的校园人力人事资源管理系统(javaspringbootssmmysqljsp) 运行环境 Java≥8、MySQL≥5.7 开发工具 eclipse/idea/myeclipse/sts等均可配置运行 适用 课程设计&#xff0c;大作业&#xff0c;毕业设计&#xff0c;项目练习&#xff0c;学习演示等 功能说明 基…

两种查看电脑连接的wifi密码的办法!

1.使用一行命令行语句 只需要同时按下WinR&#xff0c;打开命令行窗口&#xff0c;输入cmd&#xff0c;然后进入了Dos操作界面&#xff0c;输入 netsh wlan show profiles WIFI名称 keyclear注意&#xff1a;这里的名称是你自己电脑所连接的名称 即可查看电脑锁连接WIF的详细…

【K8S系列】在 Linux 上安装 KubeSphere

目录 1、多节点安装介绍 2、概念介绍 3、安装 3.1 准备主机 系统要求 3.2 下载 KubeKey 3.3 编辑配置文件 文件关键字介绍 3.3 使用配置文件创建集群 3.4 验证安装 3.5 启用 kubectl 自动补全 1、多节点安装介绍 在生产环境中&#xff0c;由于单节点集群资源有限、…

初识C++ (一)

这里写目录标题一. 什么是C &#xff1f;二. 关键字三. 命名空间namespace关键字命名域的使用四. c输入输出hello world输入结语经过一个多月的学习终于进入C啦 希望自己能够保持对编程的热爱 继续学习下去&#xff01; 并且将学习到的知识传递给大家 一. 什么是C &#xff1f;…

基于javaweb的在线心理测评系统设计和实现(java+springboot+ssm+mysql+jsp)

基于javaweb的在线心理测评系统设计和实现(javaspringbootssmmysqljsp) 运行环境 Java≥8、MySQL≥5.7 开发工具 eclipse/idea/myeclipse/sts等均可配置运行 适用 课程设计&#xff0c;大作业&#xff0c;毕业设计&#xff0c;项目练习&#xff0c;学习演示等 功能说明 …

类和对象 (三)

目录 <一>const成员 <二> 取地址及const取地址操作符重载 <三>再谈构造函数&#xff08;初始化列表&#xff09; 1.构造函数体赋值 2.初始化列表 <四>explicit关键字 <五>static成员 概念 <六>友元函数 <七>友元类 <八>内部类…

2021年上半年软件设计师上午真题及答案解析(五)

41、42、43、当UML状态图用于对系统、类或用例的动态方面建模时&#xff0c;通常是对&#xff08; &#xff09;建模。以下UML状态图中&#xff0c;假设活动的状态是A&#xff0c;事件b0发生并且a>5&#xff0c;发生条件是c状态到d状态的转换条件的是&#xff08; &#xff…

HTTP缓存

http缓存分为&#xff1a;强制缓存和协商缓存 强缓存 不需要客户端就不需要向服务器发送请求&#xff0c;直接使用本地缓存 对于强缓存的资源&#xff0c;可以看到返回的状态码是 200&#xff0c;并且会显示 from memory cache/from disk cache&#xff0c;强缓存是通过 Exp…

Go语言开发k8s-04-Service操作

文章目录1. 结构体1.1 ServiceList1.2 Service1.3 TypeMeta1.4 ObjectMeta1.5 ServiceSpec1.6 ServiceStatus1.7 对照yml文件示例2. Get List语法完整示例3. Create语法完整示例4. Get Service语法完整示例5. Update Service语法完整示例6. Delete Service语法完整示例1. 结构体…

python基于PHP的个人信息管理系统

随着现代工作的日趋繁忙,人们越来越意识到信息管理的重要性与必要性,而具有个性化特色的个人信息管理系统能够高速有效的管理个人信息,从而提升自己的工作效率 社会的发展给人们的生活压力越来越大,每天所要面临的问题也越来越多,面对如此多的事情需要去处理往往会顾此失彼,将很…

SpringCloud-Hystrix服务治理

简介 Hystrix是用于服务熔断&#xff0c;容错管理工具&#xff0c;旨在通过熔断机制控制服务和第三方库的节点&#xff0c;从而对延迟和故障提供更强大的容错能力。 服务降级 当服务器压力剧增的情况下&#xff0c;根据实际业务情况及流量&#xff0c;对一些服务和页面有策略的…

Web前端入门(十八)圆角边框及盒子阴影

总目录&#xff1a;https://blog.csdn.net/treesorshining/article/details/124725459 文章目录1.圆角边框2.盒子阴影2.1 开发中阴影常用语句2.2 文字阴影1.圆角边框 在 CSS3 中&#xff0c;新增了圆角边框样式&#xff0c;这样盒子就可以变圆角了。border-radius 属性用于设置…