反向迭代器的++即正向迭代器的--,反向迭代器的--即正向迭代器的++,反向迭代器和正向迭代器的很多功能都是相似的,因此我们可以复用正向迭代器作为反向迭代器的底层容器来封装,从而实现出反向迭代器,即:反向迭代器内部可以包含一个正向迭代器,对正向迭代器的接口进行包装
这样一来我们可以实现任意容器的反向迭代器,如果用的是vector的正向迭代器,那么就封装出vector的反向迭代器,如果用的是list的正向迭代器,那么就封装出list的反向迭代器,这就是迭代器适配器了
反向迭代器:
template<class Iterator,class Ref,class Ptr>
class ReverseIterator
{
typedef ReverseIterator<Iterator, Ref, Ptr> Self;
public:
ReverseIterator(Iterator it)
:_it(it)
{}
Self& operator++()
{
--_it;
return *this;
}
Self operator++(int)
{
Self tmp(*this);
--_it;
return tmp;
}
Self& operator--()
{
++_it;
return *this;
}
Self operator--(int)
{
Self tmp(*this);
++_it;
return tmp;
}
Ref operator*()//返回前一个位置的数据
{
Iterator cur = _it;
return *(--cur);
}
Ptr operator->()
{
return &(operator*());
}
bool operator!=(const Self& s)
{
return _it != s._it;
}
bool operator==(const Self& s)
{
return _it == s._it;
}
private:
Iterator _it;
};
库中设计的反向迭代器与正向迭代器是对称关系,关于解引用越界问题也很巧妙的处理了~:
解引用返回的是前一个位置的数据
vector模拟实现:
#include<assert.h>
#include"Reverseiterator.h"
namespace djx
{
template<class T>
class vector
{
public:
typedef T* iterator;
typedef const T* const_iterator;
typedef ReverseIterator<iterator, T&, T*> reverse_iterator;
typedef ReverseIterator<const_iterator, const T&, const T*> const_reverse_iterator;
reverse_iterator rbegin()
{
return reverse_iterator(end());
}
reverse_iterator rend()
{
return reverse_iterator(begin());
}
const_reverse_iterator rbegin() const
{
return const_reverse_iterator(end());
}
const_reverse_iterator rend() const
{
return const_reverse_iterator(begin());
}
iterator begin()
{
return _start;
}
iterator end()
{
return _finish;
}
const_iterator begin()const
{
return _start;
}
const_iterator end()const
{
return _finish;
}
vector()//一定要写,因为我们已经写了拷贝构造了,编译器不会生成默认的构造函数,当要使用无参的构造时如果我们没写,就没有,会报错
{}
vector(const vector<T>& v)
{
reserve(v.capacity());
for (auto& e : v)
{
push_back(e);
}
}
vector(size_t n, const T& val = T())
{
reserve(n);
for (size_t i = 0; i < n; i++)
{
push_back(val);
}
}
template <class InputIterator>
vector(InputIterator first, InputIterator last)
{
while (first != last)
{
push_back(*first);
first++;
}
}
void swap(vector<T>& v)
{
std::swap(_start, v._start);
std::swap(_finish, v._finish);
std::swap(_endofstorage, v._endofstorage);
}
vector<T>& operator=(vector<T> tmp)
{
swap(tmp);
return *this;
}
~vector()
{
delete[] _start;
_start = _finish = _endofstorage = nullptr;
}
T& operator[](size_t pos)
{
assert(pos < size());
return _start[pos];
}
const T& operator[](size_t pos) const
{
assert(pos < size());
return _start[pos];
}
void reserve(size_t n)
{
if (n > capacity())
{
size_t sz = size();
T* tmp = new T[n];
if (_start)
{
for (size_t i = 0; i < sz; i++)
{
tmp[i] = _start[i];
}
delete[] _start;
}
_start = tmp;
_finish = _start + sz;
_endofstorage = _start + n;
}
}
void push_back(const T& val)
{
/* if (_finish == _endofstorage)
{
reserve(capacity() == 0 ? 4 : capacity() * 2);
}
*_finish = val;
_finish++;*/
insert(end(), val);//复用insert
}
void resize(size_t n, const T& val = T())
{
if (n <= size())
{
_finish = _start + n;
}
else
{
reserve(n);
while (_finish < _start + n)
{
*_finish = val;
_finish++;
}
}
}
void insert(iterator pos, const T& val)
{
assert(pos >= _start);
assert(pos <= _finish);
if (_finish == _endofstorage)
{
size_t len = pos - _start;
reserve(capacity() == 0 ? 4 : capacity() * 2);
pos = _start + len;
}
iterator end = _finish - 1;
while (end >= pos)
{
*(end + 1) = *end;
end--;
}
*pos = val;
_finish++;
}
iterator erase(iterator pos)
{
assert(pos >= _start);
assert(pos < _finish);
iterator begin = pos + 1;
while (begin < _finish)
{
*(begin - 1) = *begin;
begin++;
}
_finish--;
return pos;
}
size_t capacity() const
{
return _endofstorage - _start;
}
size_t size()const
{
return _finish - _start;
}
private:
iterator _start = nullptr;//都会走构造,拷贝构造的初始化列表
iterator _finish = nullptr;//给缺省值,就不用我们在构造,拷贝构造函数的初始化列表给值
iterator _endofstorage = nullptr;
};
}
测试vector的反向迭代器:
void func(const djx::vector<int>& v)
{
djx::vector<int>::const_reverse_iterator rit = v.rbegin();
while (rit != v.rend())
{
cout << *rit << " ";
rit++;
}
cout << endl;
}
int main()
{
djx::vector<int> v;
v.push_back(1);
v.push_back(2);
v.push_back(3);
v.push_back(4);
djx::vector<int>::reverse_iterator rit = v.rbegin();
while (rit != v.rend())
{
cout << *rit << " ";
rit++;
}
cout << endl;
func(v);
return 0;
}
list模拟实现:
#include"Reverseiterator.h"
namespace djx
{
template<class T>
struct list_node
{
T _data;
list_node<T>* _prev;
list_node<T>* _next;
list_node(const T& x = T())
:_data(x)
, _prev(nullptr)
, _next(nullptr)
{}
};
template<class T, class Ref, class Ptr>
struct __list_iterator
{
typedef list_node<T> Node;
typedef __list_iterator<T, Ref, Ptr> self;
Node* _node;
__list_iterator(Node* node)
:_node(node)
{}
Ref operator*()
{
return _node->_data;
}
Ptr operator->()
{
return &_node->_data;
}
self& operator++()
{
_node = _node->_next;
return *this;
}
self operator++(int)
{
self tmp(*this);
_node = _node->_next;
return tmp;
}
self& operator--()
{
_node = _node->_prev;
return *this;
}
self operator--(int)
{
self tmp(*this);
_node = _node->_prev;
return tmp;
}
bool operator!=(const self& s)
{
return _node != s._node;
}
bool operator==(const self& s)
{
return _node == s._node;
}
};
template<class T>
class list
{
typedef list_node<T> Node;
public:
typedef __list_iterator<T, T&, T*> iterator;
typedef __list_iterator<T, const T&, const T*> const_iterator;
typedef ReverseIterator<iterator, T&, T*> reverse_iterator;
typedef ReverseIterator<const_iterator, const T&, const T*> const_reverse_iterator;
reverse_iterator rbegin()
{
return reverse_iterator(end());
}
reverse_iterator rend()
{
return reverse_iterator(begin());
}
const_reverse_iterator rbegin()const
{
return const_reverse_iterator(end());
}
const_reverse_iterator rend() const
{
return const_reverse_iterator(begin());
}
iterator begin()
{
return _head->_next;
}
iterator end()
{
return _head;
}
const_iterator begin()const
{
return _head->_next;
}
const_iterator end()const
{
return _head;
}
void empty_init()
{
_head = new Node;
_head->_next = _head;
_head->_prev = _head;
_size = 0;
}
list()
{
empty_init();
}
list(const list<T>& lt)
{
empty_init();
for (auto e : lt)
{
push_back(e);
}
}
void swap(list<T>& lt)
{
std::swap(_head, lt._head);
std::swap(_size, lt._size);
}
list<T>& operator=(list<T> lt)
{
swap(lt);
return *this;
}
~list()
{
clear();
delete _head;
_head = nullptr;
}
void clear()
{
iterator it = begin();
while (it != end())
{
it = erase(it);
}
}
void push_back(const T& x)
{
insert(end(), x);
}
void push_front(const T& x)
{
insert(begin(), x);
}
void pop_back()
{
erase(--end());
}
void pop_front()
{
erase(begin());
}
iterator insert(iterator pos, const T& x)
{
Node* cur = pos._node;
Node* newnode = new Node(x);
Node* prev = cur->_prev;
prev->_next = newnode;
newnode->_prev = prev;
newnode->_next = cur;
cur->_prev = newnode;
_size++;
return newnode;
}
iterator erase(iterator pos)
{
Node* cur = pos._node;
Node* next = cur->_next;
Node* prev = cur->_prev;
delete cur;
prev->_next = next;
next->_prev = prev;
_size--;
return next;
}
size_t size()
{
return _size;
}
private:
Node* _head;
size_t _size;
};
}
测试list的反向迭代器:
void func(const djx::list<int>& lt)
{
djx::list<int>::const_reverse_iterator rit = lt.rbegin();
while (rit != lt.rend())
{
cout << *rit << " ";
rit++;
}
cout << endl;
}
int main()
{
djx::list<int> lt;
lt.push_back(1);
lt.push_back(2);
lt.push_back(3);
lt.push_back(4);
djx::list<int>::reverse_iterator rit = lt.rbegin();
while (rit != lt.rend())
{
cout << *rit << " ";
rit++;
}
cout << endl;
func(lt);
return 0;
}
当然了,我们也可以按照不同于库中设计的逻辑来设计反向迭代器:但是存在一些细节需要处理
与库中反向迭代器设计模式不同之处在于解引用的设计
上图版本的反向迭代器解引用重载的设计:
Ref operator*()
{
return *_it
}
那么,相应的在vector和list中也会发生变化:
vector中:
reverse_iterator rbegin()
{
return reverse_iterator(end() - 1);
}
reverse_iterator rend()
{
return reverse_iterator(begin() - 1);
}
const_reverse_iterator rbegin() const
{
return const_reverse_iterator(end() - 1);
}
const_reverse_iterator rend() const
{
return const_reverse_iterator(begin() - 1);
}
需要注意的是必须是end()-1 /begin()-1 而不能是--end()/--begin()
因为vector类中迭代器的实现,我们将其设计为原生指针T*,是内置类型
end()/begin() 为传值返回,返回的是临时对象,具有常性,不可被修改
list中:
reverse_iterator rbegin()
{
return reverse_iterator(--end());
}
reverse_iterator rend()
{
return reverse_iterator(end());
}
const_reverse_iterator rbegin() const
{
return const_reverse_iterator(--end());
}
const_reverse_iterator rend() const
{
return const_reverse_iterator(end());
}
也可以设计成end()-1,只不过list的正向迭代器是自定义类型,需要重载-运算符才可
那么问题就来了,为什么同样是各自的--end() ,vector就报错,我们知道因为返回的是临时对象具有常性导致的,但是list却不报错可以这样设计呢?
诚然,list的end()返回的也是临时对象,同样具有常性,不报错是因为这是特殊情况,特殊处理:具有常性的自定义类型的对象可以调用非const的函数
所以list中的--end()返回的自定义类型的临时对象可以调用list迭代器类中,非const的--运算符重载函数
如:
class A
{
public:
A(int x = 0)
:_a(x)
{}
void Print()
{}
private:
int _a;
};
我们有时候会写出这样的代码:
A(1).Print(); // 特殊处理
A(1)是匿名对象具有常性,而print函数是非const的