二叉树10:二叉树的最小深度

news2024/11/8 18:47:51

主要是我自己刷题的一些记录过程。如果有错可以指出哦,大家一起进步。
转载代码随想录
原文链接:
代码随想录
leetcode链接:111. 二叉树的最小深度

题目:

给定一个二叉树,找出其最小深度。

最小深度是从根节点到最近叶子节点的最短路径上的节点数量。
说明:叶子节点是指没有子节点的节点。

示例:

示例 1:

在这里插入图片描述

输入:root = [3,9,20,null,null,15,7]
输出:2

示例 2:

输入:root = [2,null,3,null,4,null,5,null,6]
输出:5

提示:

树中节点数的范围在 [0, 105] 内
-1000 <= Node.val <= 1000

思路:

直觉上好像和求最大深度差不多,其实还是差不少的。

本题依然是前序遍历和后序遍历都可以,前序求的是深度,后序求的是高度。

二叉树节点的深度:指从根节点到该节点的最长简单路径边的条数或者节点数(取决于深度从0开始还是从1开始)
二叉树节点的高度:指从该节点到叶子节点的最长简单路径边的条数后者节点数(取决于高度从0开始还是从1开始)

那么使用后序遍历,其实求的是根节点到叶子节点的最小距离,就是求高度的过程,不过这个最小距离 也同样是最小深度。

以下讲解中遍历顺序上依然采用后序遍历(因为要比较递归返回之后的结果,本文我也给出前序遍历的写法)。

本题还有一个误区,在处理节点的过程中,最大深度很容易理解,最小深度就不那么好理解,如图:
在这里插入图片描述
这就重新审题了,题目中说的是:最小深度是从根节点到最近叶子节点的最短路径上的节点数量。,注意是叶子节点。

什么是叶子节点,左右孩子都为空的节点才是叶子节点!

递归法

来来来,一起递归三部曲:

确定递归函数的参数和返回值
参数为要传入的二叉树根节点,返回的是int类型的深度。

代码如下:

int getDepth(TreeNode* node)

确定终止条件
终止条件也是遇到空节点返回0,表示当前节点的高度为0。
代码如下:(其实我感觉这里到叶子节点也可以)

if (node == NULL) return 0;
// if (!node->left&&!node->right) return 1;//这个也可以

确定单层递归的逻辑
这块和求最大深度可就不一样了,一些同学可能会写如下代码:

int leftDepth = getDepth(node->left);
int rightDepth = getDepth(node->right);
int result = 1 + min(leftDepth, rightDepth);
return result;

这个代码就犯了此图中的误区:
在这里插入图片描述

如果这么求的话,没有左孩子的分支会算为最短深度。

所以,如果左子树为空,右子树不为空,说明最小深度是 1 + 右子树的深度。

反之,右子树为空,左子树不为空,最小深度是 1 + 左子树的深度。 最后如果左右子树都不为空,返回左右子树深度最小值 + 1 。

代码如下:

int leftDepth = getDepth(node->left);           // 左
int rightDepth = getDepth(node->right);         // 右
                                                // 中
// 当一个左子树为空,右不为空,这时并不是最低点
if (node->left == NULL && node->right != NULL) { 
    return 1 + rightDepth;
}   
// 当一个右子树为空,左不为空,这时并不是最低点
if (node->left != NULL && node->right == NULL) { 
    return 1 + leftDepth;
}
int result = 1 + min(leftDepth, rightDepth);
return result;

遍历的顺序为后序(左右中),可以看出:求二叉树的最小深度和求二叉树的最大深度的差别主要在于处理左右孩子不为空的逻辑。

整体递归代码如下:

class Solution {
public:
    int getDepth(TreeNode* node) {
        if (node == NULL) return 0;
        int leftDepth = getDepth(node->left);           // 左
        int rightDepth = getDepth(node->right);         // 右
                                                        // 中
        // 当一个左子树为空,右不为空,这时并不是最低点
        if (node->left == NULL && node->right != NULL) { 
            return 1 + rightDepth;
        }   
        // 当一个右子树为空,左不为空,这时并不是最低点
        if (node->left != NULL && node->right == NULL) { 
            return 1 + leftDepth;
        }
        int result = 1 + min(leftDepth, rightDepth);
        return result;
    }

    int minDepth(TreeNode* root) {
        return getDepth(root);
    }
};

精简之后代码如下:

class Solution {
public:
    int minDepth(TreeNode* root) {
        if (root == NULL) return 0;
        if (root->left == NULL && root->right != NULL) {
            return 1 + minDepth(root->right);
        }
        if (root->left != NULL && root->right == NULL) {
            return 1 + minDepth(root->left);
        }
        return 1 + min(minDepth(root->left), minDepth(root->right));
    }
};

精简之后的代码根本看不出是哪种遍历方式,所以依然还要强调一波:如果对二叉树的操作还不熟练,尽量不要直接照着精简代码来学。

前序遍历的方式:

class Solution {
private:
    int result;
    void getdepth(TreeNode* node, int depth) {
        if (node->left == NULL && node->right == NULL) {
            result = min(depth, result);  
            return;
        }
        // 中 只不过中没有处理的逻辑
        if (node->left) { // 左
            getdepth(node->left, depth + 1);
        }
        if (node->right) { // 右
            getdepth(node->right, depth + 1);
        }
        return ;
    }

public:
    int minDepth(TreeNode* root) {
        if (root == NULL) return 0;
        result = INT_MAX;
        getdepth(root, 1);
        return result;
    }
};

迭代法

相对于104.二叉树的最大深度 (opens new window),本题还可以使用层序遍历的方式来解决,思路是一样的。

需要注意的是,只有当左右孩子都为空的时候,才说明遍历到最低点了。如果其中一个孩子不为空则不是最低点

代码如下:(详细注释)

class Solution {
public:

    int minDepth(TreeNode* root) {
        if (root == NULL) return 0;
        int depth = 0;
        queue<TreeNode*> que;
        que.push(root);
        while(!que.empty()) {
            int size = que.size();
            depth++; // 记录最小深度
            for (int i = 0; i < size; i++) {
                TreeNode* node = que.front();
                que.pop();
                if (node->left) que.push(node->left);
                if (node->right) que.push(node->right);
                if (!node->left && !node->right) { // 当左右孩子都为空的时候,说明是最低点的一层了,退出
                    return depth;
                }
            }
        }
        return depth;
    }
};

自己的代码

class Solution {
public:
    int getMinDepth(TreeNode*node){
        if(!node) return 0;
        int leftMinDepth,rightMinDepth;
        if(node->left&&node->right) {
            leftMinDepth = getMinDepth(node->left);
            rightMinDepth = getMinDepth(node->right);
            return 1+min(leftMinDepth,rightMinDepth);
        }else if(!node->left){
            return 1+getMinDepth(node->right);
        }else if(!node->right){
            return 1+getMinDepth(node->left);
        }else{  //左右孩子都没有
            return 1;
        }
    }

    int minDepth(TreeNode* root) {
        if(!root) return 0;
        return getMinDepth(root);
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/108739.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Asp.Net Core实现最基本的Http服务

概述 和.NetFramework时代不同&#xff0c;Core是可以自承载的&#xff0c;也就说开发好的Web项目&#xff0c;可以打包成exe直接运行的&#xff0c;而不必放到IIS这样的环境中。接下来&#xff0c;我们写点代码&#xff0c;体验一下Asp.Net Core自带的Http功能。 初体验 所谓…

嵌入式微功耗RTU的功能与特点介绍、技术参数详情

平升电子嵌入式微功耗RTU&#xff0c;可灵活嵌入至各类仪表、传感器和工业设备中&#xff0c;定时采集设备数据并通过4G/5G/NB-IoT远传至监管软件&#xff0c;实现设备联网。 嵌入式微功耗RTU设计小巧、方便集成&#xff0c;微功耗运行&#xff0c;支持标准水资源/水文/环保/M…

Biotin-PEG-AC,Biotin-PEG-Acrylate,生物素PEG丙烯酸酯线性杂双功能PEG试剂

英文名称&#xff1a;Biotin-PEG-AC&#xff0c;Biotin-PEG-Acrylate 中文名称&#xff1a;生物素-聚乙二醇-丙烯酸酯 生物素-聚乙二醇-丙烯酸酯是一种含有生物素和丙烯酸酯的线性杂双功能聚乙二醇试剂。它是一种有用的带有PEG间隔基的交联或生物结合试剂。生物素能与亲和素和…

智创万物,数赢未来——如何助推数智时代的发展浪潮

数智化核心特征 可视化 消费者的行为可以看得见&#xff0c;生产者的行为也可以看得见。产业互联网或者消费互联网非常重要的一点就是要对消费者行为和生产者行为的可视化&#xff0c;其背后是数字化的力量。 可量化 可量化意味着企业家可以对管理流程进行改造&#xff0c;…

echarts的legend——图例样式的配置

认识图例&#xff1a; 以上几张图表中&#xff0c;红色圆圈部分即图例 echarts图表中的图例&#xff0c;有形状&#xff0c;颜色&#xff0c;位置等等各种样式的不同配置。 echarts官网配置项手册里有非常详细的内容&#xff0c;我们挑几种常用的看看&#xff0c;加深对legend属…

深度学习——物体检测算法:R-CNN,SSD,YOLO(笔记)

一&#xff0c;R-CNN 1.区域卷积神经网络R-CNN 首先从输入图像中提取若干个锚框&#xff0c;并标注好它们的类别和偏移量。然后用卷积神经网络对每一个锚框进行前向传播抽取特征。最后用每个提议区域的特征来预测类别和边界框。 ①使用启发式搜索算法来选择锚框 ②使用预训练…

【第一周学习——认识 O(N*logN) 的排序[ 归并排序 、堆排序、快速排序 ]

前言&#xff1a; &#x1f44f;作者简介&#xff1a;我是笑霸final&#xff0c;一名热爱技术的在校学生。 &#x1f4dd;个人主页&#xff1a;个人主页1 || 笑霸final的主页2 &#x1f4d5;系列专栏&#xff1a;《数据结构与算法》 &#x1f4e7;如果文章知识点有错误的地方&a…

力扣(LeetCode)187. 重复的DNA序列(C++)

哈希表 直观思考&#xff0c;由于限定了答案长度 101010 &#xff0c;只需要一次遍历字符串&#xff0c;统计所有长度为 101010 的子串的出现次数(哈希表) &#xff0c;最后遍历哈希表&#xff0c;维护答案&#xff0c;记录出现 222 次(及以上)的字符串 。 class Solution { …

【BBuf的CUDA笔记】二,解析 OneFlow BatchNorm 相关算子实现

0x1. 前言 在ResNet中&#xff08;https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py&#xff09;&#xff0c;关于BatchNorm的调用一共有两种模式&#xff0c;第一种是ReLU接在BN之后&#xff1a; out self.bn1(out) out self.relu(out)另外一种…

MicFunPred——最新16S rRNA扩增子数据功能预测数据库

近年来&#xff0c;基于扩增子测序进行物种的功能预测是研究微生物群落功能的主要方面&#xff0c;目前最常用的软件包括Tax4Fun以及PICRUSt2。关于这两款软件的使用方法详可参见凌波微课|扩增子研究第十六讲&#xff1a;扩增子测序结果中的物种功能预测。 Tax4Fun使用最近邻匹…

2022年终总结-两年Androider的成长之路

金句分享 生活金句 1.可难道我们生命中做的每一件事不都是为了被爱得更多一点吗 2.这不只是一种对承诺的恐惧&#xff0c;也不是我缺乏关心和爱的能力&#xff0c;因为我做得到&#xff0c;只不过&#xff0c;老老实实讲。我想 我宁愿为了某件我擅长的事&#xff0c;我能表现…

一个select死锁问题

以下代码的输出结果&#xff1a; func main() {var wg sync.WaitGroupfoo : make(chan int)bar : make(chan int)wg.Add(1)go func() {defer wg.Done()select {case foo <- <-bar:default:println("default")}}()wg.Wait() }结果 解析 对于 select 语句&#…

【Linux】进程信号

目录 一、什么是信号 二、信号产生的条件 1、键盘产生 2、进程异常 3、命令产生 4、软件条件 三、信号保存的方式 四、信号处理的方式 1、信号处理接口 2、信号处理时机 3、进程为什么要切换成为用户态才进行信号的捕获方法&#xff1f; 4、sigaction 五、可重入函…

Java+MySQL基于ssm的会议交接平台

随着社会竞争压力的不断加强,企事业单位内部的会议都在不断的增加,有效的会议可以提高企事业内部的沟通,更好的做出符合战略目标的决策,但是传统的会议交接有一定的问题存在,首先就是必须面对面进行传达,其次就是对任务的安排和执行没有很好的记录,为了改变这些情况,于是我们提…

信贷产品年终总结之贷后逾期分析

自本月月初疫情全面放开后&#xff0c;身边的朋友基本都阳了一遍&#xff0c;希望正在浏览本篇文章的读者您是还没阳过的幸运儿。另外&#xff0c;今天也是冬至了&#xff0c;祝各位读者身边健康&#xff0c;远离羊群&#xff01; 最近我们分享了信贷业务年终总结系列的前2篇文…

Python中转义字符是个啥

文章目录前言一、转义字符是什么&#xff1f;二、常见的转义字符有哪些&#xff1f;总结前言 昨天有粉丝问了我这个代码问题&#xff0c;如下图&#xff1a; 他很好奇代码都没有错误&#xff0c;怎么运行就报错&#xff0c;不知道有咩有小伙伴能看出问题在哪呢&#xff1f; 其…

Cookie 和 Session 的工作流程

文章目录1.Cookie1.什么是Cookie2.Cookie可以干嘛3.Cookie实现登陆逻辑的流程2.session1.session是什么2.session有什么用3.session的工作流程3.Cookie 和 session的区别(重点)1.Cookie 1.什么是Cookie Cookie中存储的是字符串,是浏览器在本地持久化保存数据的一种方案 通过点…

2023春招:Javaweb面试锦囊

cookie 和 session 的区别&#xff1f;&#xff08;必会&#xff09; 存储位置不同 cookie 存放在客户端电脑&#xff0c;是一个磁盘文件。Ie 浏览器是可以从文件夹中找到。session 是存放在服务器内存中的一个对象。 chrome 浏览器进行安全处理&#xff0c;只能通过浏览器找…

圣诞 HTML 代码汇总

文章目录Part.I 音效圣诞树Part.II 圣诞树小球Part.III 简笔圣诞树圣诞节快到了&#xff0c;在网上找了一些 html 代码&#xff0c;觉得挺有意思的&#xff0c;顺带分享一下~ Part.I 音效圣诞树 来源&#xff1a;https://blog.csdn.net/m0_73309780/article/details/128176149…

面临项目失控?四个维度应对项目进度优化【洞见2】

常见的对进度的管理的流程是制定进度目标&#xff0c;WBS工作任务拆解&#xff0c;任务的时间估算&#xff0c;然后执行监督。 有时候这样的过程就会出现的进度延迟&#xff0c;而针对进度的延迟&#xff0c;往往企业多选择是通过加班赶工来完成。 项目进度优化方案 但是如…