竞赛选题 深度学习 植物识别算法系统

news2024/11/18 5:32:38

文章目录

  • 0 前言
  • 2 相关技术
    • 2.1 VGG-Net模型
    • 2.2 VGG-Net在植物识别的优势
      • (1) 卷积核,池化核大小固定
      • (2) 特征提取更全面
      • (3) 网络训练误差收敛速度较快
  • 3 VGG-Net的搭建
    • 3.1 Tornado简介
      • (1) 优势
      • (2) 关键代码
  • 4 Inception V3 神经网络
    • 4.1 网络结构
  • 5 开始训练
    • 5.1 数据集
    • 5.2 关键代码
    • 5.3 模型预测
  • 6 效果展示
    • 6.1 主页面展示
    • 6.2 图片预测
    • 6.3 三维模型可视化
  • 7 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的植物识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

在这里插入图片描述

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


2 相关技术

2.1 VGG-Net模型

Google DeepMind公司研究员与牛津大学计算机视觉组在2014年共同研发出了一种全新的卷积神经网络–VGG-
Net。在同年举办的ILSVRC比赛中,该网络结构模型在分类项目中取得了十分出色的成绩,由于其简洁性和实用性,使得其在当时迅速,飞快地成为了最受欢迎的卷积神经网络模型。VGG-
Net卷积神经网络在近年来衍生出了A-
E七种不同的层次结构,本次研究使用其中的D结构,也就是VGG-16Net结构,该结构中包含了13个卷积层,5个池化层和3个全连接层。针对所有的卷积层,使用相同的5x5大小的卷积核,针对所有的池化层,使用相同的3x3大小的池化核。VGG-
Net结构如图所示。

在这里插入图片描述

2.2 VGG-Net在植物识别的优势

在针对植物识别问题上,VGG-Net有着一些相较于其他神经网络的优势,主要包括以下几点:

(1) 卷积核,池化核大小固定

网络中所有的卷积核大小固定为3x3,所有的池化核大小固定为5x5。这样在进行卷积和池化操作的时候,从数据中提取到的特征更加明显,同时在层与层的连接时,信息的丢失会更少,更加方便后续对于重要特征的提取和处理。

(2) 特征提取更全面

VGG-
Net网络模型中包含了13个卷积层。卷积层数目越多,对于特征的提取更加的全面。由于需要对于植物的姿态、颜色等进行判定,植物的特征较多,需要在提取时更加的全面,细致,才有可能得到一个更加准确的判定。VGG-
Net符合条件。

在这里插入图片描述

(3) 网络训练误差收敛速度较快

VGG-
Net网络在训练时收敛速度相对较快,能够较快地得到预期的结果。具有这一特点的原因有两个,一个是网络中每一个卷积层和池化层中的卷积核大小与池化核大小固定,另一个就是对于各个隐藏层的参数初始化方法使用专门针对ReLU激活函数的Kaiming正态初始化方法。

3 VGG-Net的搭建

本次研究基于Pytorch深度学习框架进行网络的搭建,利用模块化的设计思想,构建一个类,来对于整个的网络进行结构上的封装。这样搭建的好处是可以隐藏实现的内部细节,提高代码的安全性,增强代码的复用效率,并且对于一些方法,通过在内部集成,可以方便之后对于其中方法的调用,提升代码的简洁性。
在网络搭建完成后,将数据集传入网络中进行训练,经过一段时间后即可得到植物识别的分类识别结果。

3.1 Tornado简介

Tornado全称Tornado Web
Server,是一个用Python语言写成的Web服务器兼Web应用框架,由FriendFeed公司在自己的网站FriendFeed中使用,被Facebook收购以后框架在2009年9月以开源软件形式开放给大众。

(1) 优势

  • 轻量级web框架
  • 异步非阻塞IO处理方式
  • 出色的抗负载能力
  • 优异的处理性能,不依赖多进程/多线程,一定程度上解决C10K问题
  • WSGI全栈替代产品,推荐同时使用其web框架和HTTP服务器

(2) 关键代码



    class MainHandler(tornado.web.RequestHandler):
        def get(self):
            self.render("index.html")
    
        def post(self):
            keras.backend.clear_session()
            img = Image.open(BytesIO(self.request.files['image'][0]['body']))
            img = img
            b_img = Image.new('RGB', (224, 224), (255, 255, 255))
            size = img.size
            if size[0] >= size[1]:
                rate = 224 / size[0]
                new_size = (224, int(size[1] * rate))
                img = img.resize(new_size, Image.ANTIALIAS
                                 ).convert("RGB")
                b_img.paste(img, (0, random.randint(0, 224 - new_size[1])))
    
            else:
                rate = 224 / size[1]
                new_size = (int(size[0] * rate), 224)
                img = img.resize(new_size, Image.ANTIALIAS
                                 ).convert("RGB")
                b_img.paste(img, (random.randint(0, 224 - new_size[0]), 0))
    
            if self.get_argument("method", "mymodel") == "VGG16":
                Model = load_model("VGG16.h5")
            else:
                Model = load_model("InceptionV3.h5")
    
            data = orc_img(Model,b_img)
            self.write(json.dumps(
                {"code": 200, "data": data
                 }))
            
            def make_app():
        template_path = "templates/"
        static_path = "./static/"
    
        return tornado.web.Application([
    
            (r"/", MainHandler),
    
        ], template_path=template_path, static_path=static_path, debug=True)


    def run_server(port=8000):
        tornado.options.parse_command_line()
        app = make_app()
        app.listen(port)
        print("\n服务已启动 请打开 http://127.0.0.1:8000 ")
        tornado.ioloop.IOLoop.current().start()


4 Inception V3 神经网络

GoogLeNet对网络中的传统卷积层进行了修改,提出了被称为 Inception
的结构,用于增加网络深度和宽度,提高深度神经网络性能。从Inception V1到Inception
V4有4个更新版本,每一版的网络在原来的基础上进行改进,提高网络性能。

4.1 网络结构

在这里插入图片描述

inception结构的作用(inception的结构和作用)

作用:代替人工确定卷积层中过滤器的类型或者确定是否需要创建卷积层或者池化层。即:不需要人为决定使用什么过滤器,是否需要创建池化层,由网络自己学习决定这些参数,可以给网络添加所有可能值,将输入连接起来,网络自己学习需要它需要什么样的参数。

inception主要思想

用密集成分来近似最优的局部稀疏解(如上图)

  • 采用不同大小的卷积核意味着有不同大小的感受野,最后的拼接意味着不同尺度特征的融合。
  • 之所以卷积核大小采用1x1、3x3和5x5,主要是为了方便对齐。设定卷积步长stride=1之后,只要分别设定padding = 0、1、2,采用same卷积可以得到相同维度的特征,然后这些特征直接拼接在一起。
  • 很多地方都表明pooling挺有效,所以Inception里面也嵌入了pooling。
  • 网络越到后面特征越抽象,且每个特征涉及的感受野也更大,随着层数的增加,3x3和5x5卷积的比例也要增加。
  • 最终版inception,加入了1x1 conv来降低feature map厚度。

5 开始训练

5.1 数据集

训练图像按照如下方式进行分类,共分为9文件夹。

在这里插入图片描述

5.2 关键代码

    

    from keras.utils import Sequence
    import math


    class SequenceData(Sequence):
        def __init__(self, batch_size, target_size, data):
            # 初始化所需的参数
    
            self.batch_size = batch_size
            self.target_size = target_size
            self.x_filenames = data
    
        def __len__(self):
            # 让代码知道这个序列的长度
            num_imgs = len(self.x_filenames)
            return math.ceil(num_imgs / self.batch_size)
    
        def __getitem__(self, idx):
            # 迭代器部分
            batch_x = self.x_filenames[idx * self.batch_size: (idx + 1) * self.batch_size]
            imgs = []
            y = []
            for x in batch_x:
                img = Image.open(x)
                b_img = Image.new('RGB', self.target_size, (255, 255, 255))
                size = img.size
                if size[0] >= size[1]:
                    rate = self.target_size[0] / size[0]
                    new_size = (self.target_size[0], int(size[1] * rate))
                    img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")
                    b_img.paste(img, (0, random.randint(0, self.target_size[0] - new_size[1])))
    
                else:
                    rate = self.target_size[0] / size[1]
                    new_size = (int(size[0] * rate), self.target_size[0])
                    img = img.resize(new_size, Image.ANTIALIAS).convert("RGB")
                    b_img.paste(img, (random.randint(0, self.target_size[0] - new_size[0]), 0))
    
                img = b_img
                if random.random() < 0.1:
                    img = img.convert("L").convert("RGB")
                if random.random() < 0.2:
                    img = img.rotate(random.randint(0, 20))  # 随机旋转一定角度
                if random.random() < 0.2:
                    img = img.rotate(random.randint(340, 360))  # 随 旋转一定角度
                imgs.append(img.convert("RGB"))
    
            x_arrays = 1 - np.array([np.array(i)  for i in imgs]).astype(
                float) / 255  # 读取一批图片
    
            batch_y = to_categorical(np.array([labels.index(x.split("/")[-2]) for x in batch_x]), len(labels))
    
            return x_arrays, batch_y



5.3 模型预测

利用我们训练好的 vgg16.h5 模型进行预测,相关代码如下:

def orc_img(model,image):
    img =np.array(image)
    img = np.array([1 - img.astype(float) / 255])
    predict = model.predict(img)
    index = predict.argmax()
    print("CNN预测", index)

    target = target_name[index]
    index2 = np.argsort(predict)[0][-2]
    target2 = target_name[index2]
    index3 = np.argsort(predict)[0][-3]
    target3 = target_name[index3]

    return {"target": target,
            "predict": "%.2f" % (float(list(predict)[0][index]) * 64),

            "target2": target2,
            "predict2": "%.2f" % (float(list(predict)[0][index2]) * 64),

            }

6 效果展示

6.1 主页面展示

在这里插入图片描述

6.2 图片预测

在这里插入图片描述

6.3 三维模型可视化

学长在web页面上做了一个三维网络结构可视化功能,可以直观的看到网络模型结构

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1082807.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OpenCV4(C++)—— 创建窗口滑动条来调参

文章目录 创建滑动条 —— createTrackbar 创建滑动条 —— createTrackbar createTrackbar是OpenCV中的一个函数&#xff0c;用于创建一个可调节的滑动条&#xff08;Trackbar&#xff09;&#xff0c;以便在图像处理过程中实时调整参数 int cv::createTrackbar(const String…

异地监控如何实现远程访问?贝锐蒲公英无需公网IP即可实现

当前&#xff0c;视频监控系统在各领域都得到了广泛的应用。在交通行业&#xff0c;江苏某科技企业专门从事系统集成、软件开发以及交通信息工程的设计、研发和实施&#xff0c;为高速公路信息化建设提供了一系列解决方案&#xff0c;包括机电系统、视频联网监控系统、征收管理…

I2VGen-XL高清图像生成视频大模型

本项目I2VGen-XL旨在解决根据输入图像生成高清视频任务。I2VGen-XL由达摩院研发的高清视频生成基础模型之一&#xff0c;其核心部分包含两个阶段&#xff0c;分别解决语义一致性和清晰度的问题&#xff0c;参数量共计约37亿&#xff0c;模型经过在大规模视频和图像数据混合预训…

虹科分享 | 独特的FRER机制:TSN如何确保网络的可靠性?

1.IEEE802.1 CB协议 Frame Replication and Elimination for Reliability(FRER)是IEEE 802.1CB协议的一个重要特性&#xff0c;旨在增强以太网网络的可靠性。FRER利用帧复制和消除技术提供冗余保护和从连接故障中快速恢复。 FRER-IEEE 802.1CB协议的应用场景&#xff1a; 高…

Navicat如何连接远程服务器的MySQL

参考:https://blog.csdn.net/a648119398/article/details/122420906 1.Navicat for Mysql 2.腾讯云轻量级服务器一台&#xff08;Centos 7&#xff09; 3.Mysql 8.0.24&#xff08;远程服务器内安装的&#xff09; 4.Xshell7&#xff08;连接操作远程服务器&#xff09; 一、修…

【AI视野·今日Robot 机器人论文速览 第五十一期】Tue, 10 Oct 2023

AI视野今日CS.Robotics 机器人学论文速览 Tue, 10 Oct 2023 Totally 54 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Robotics Papers On Multi-Fidelity Impedance Tuning for Human-Robot Cooperative Manipulation Authors Ethan Lau, Vaibhav Srivastava, Sh…

skywalking动态配置[集成nacos/apollo/consul]

说明:以下配置仅关于的阈值规则的动态配置,其他参数也可以进行配置。 1,skywalking动态配置集成nacos 编辑application.yml nacos配置参数如下: nacos:# Nacos Server HostserverAddr: 10.10.5.145# Nacos Server Portport: 8848# Nacos Configuration Groupgroup: skywal…

塑胶材料检测对激光焊机的作用

塑胶材料的激光焊接已经普遍用于各种零配件&#xff0c;而塑料的透光率是焊接工艺质量的一个重要指标。针对这类塑胶材料推出这款专门检测塑胶材料近红外透光率特性的透光率检测仪&#xff0c;对注塑件的透光率进行全画面扫描。 全球工业致力于贯彻绿色环保、节能减排发展理念&…

IntelliJ IDEA Maven 项目的依赖分析

在一个 maven 的项目中&#xff0c;我们需要知道我们的项目中使用的包可能有哪些冲突。 这个在 IntelliJ IDEA 中提供了贴心的查看。 选择 Maven 项目中的分析依赖。 随后&#xff0c;IntelliJ IDEA 将会打开一个依赖分析的标签页。 在这个标签页中&#xff0c;我们可以看到…

【C++11】function包装器,bind函数模板使用

&#x1f30f;博客主页&#xff1a; 主页 &#x1f516;系列专栏&#xff1a; C ❤️感谢大家点赞&#x1f44d;收藏⭐评论✍️ &#x1f60d;期待与大家一起进步&#xff01; 文章目录 前言一、function的原型二、function的使用三、bind1.绑定普通函数2.绑定类中的静态成…

机器视觉工程师能不能去海康做机器视觉?

海康对机器视觉工程师招聘体现以下几点&#xff1a; 机器视觉硬件市场竞争的复杂化&#xff0c;对各个“站点”&#xff0c;进行定点服务&#xff0c;如沈阳&#xff0c;北京&#xff0c;天津&#xff0c;苏州&#xff0c;上海&#xff0c;武汉&#xff0c;成都等。 在这种市场…

Vue、js底层深入理解笔记(二)

1.跨域 跨域原因 > 浏览器的同源策略 属于一种保护机制 如果没有同源策略的保护 一般用来处理登录cookie、服务端验证通过后会在响应头加入Set-Cookie字段、下次再发请求的时候&#xff0c;浏览器会自动将cookie附加在HTTP请求的头字段Cookie中、也就是说跳转到其他网站你也…

CubeMX+BabyOS 使用方法

MCU&#xff1a;STM32G030F 编译器&#xff1a;MDK 托管工具&#xff1a;Sourcetree CubeMX创建工程 BabyOS克隆 添加子模块 git submodule add https://gitee.com/notrynohigh/BabyOS.git BabyOS 切换dev 分支 查看当前分支 git branch -a 切换本地分支到dev git che…

NSIC2050JBT3G 车规级120V 50mA ±15% 用于LED照明的线性恒流调节器(CCR) 增强汽车安全

随着汽车行业的巨大变革&#xff0c;高品质的汽车氛围灯效、仪表盘等LED指示灯效已成为汽车内饰设计中不可或缺的元素。深力科安森美LED驱动芯片系列赋能智能座舱灯效充满艺术感和科技感——NSIC2050JBT3G LED驱动芯片&#xff0c;实现对每路LED亮度和颜色进行细腻控制&#xf…

HTML笔记

注释标签&#xff1a;<!-- --> 标题标签&#xff1a;&#xff08;作用范围依次递减&#xff09; <h1></h1> <h2></h2> <h3></h3> <h4></h4> <h5></h5> <h6></h6> 段落标签&#xff1a;<p&g…

Ubuntu上安装、使用MongoDB详细教程

MongoDB是所有非关系型数据库中最像关系型数据库的一种存储技术&#xff0c;MongoDB中的数据结构是类似于JSON的BSON&#xff08;Binary Json&#xff09;&#xff0c;这篇文章就详细介绍如何安装和使用MongoDB。 目录 一、下载MongoDB 二、启动MongoDB 准备工作 启动方式一…

流程自动化如何帮助简化安全性

正如帮助开发 IT 安全最佳实践的政府机构 NIST 所说&#xff0c;人们越来越认识到网络安全是“每个人的工作”。换句话说&#xff0c;不仅仅是 IT 组织内的技术员工必须帮助预防和检测网络安全风险。组织中的每个人&#xff0c;包括没有技术或网络安全背景的员工&#xff0c;都…

深度学习笔记之优化算法(七)总结与延伸:使用Nesterov动量的RMSProp算法

深度学习笔记之优化算法——总结与延伸&#xff1a;使用Nesterov动量的RMSProp算法 引言回顾&#xff1a;优化方式区别(2023/10/11) 关于指数加权移动平均法的补充算法过程描述基于Nesterov动量的RMSProp示例代码 引言 上一节介绍了 RMSProp \text{RMSProp} RMSProp算法&#…

【方法】PDF不能转换成其它格式如何解决?

想把PDF文件转换成其他格式&#xff0c;比如Word、PPT&#xff0c;却发现无法操作&#xff0c;这是什么情况呢&#xff1f;又该如何解决&#xff1f;下面我们一起来看看吧。 原因1&#xff1a;没有使用PDF编辑器 如果是在线打开PDF&#xff0c;或者使用PDF阅读器打开PDF&…

C++ opencv实现letterbox

代码&#xff1a; #include <iostream> #include "string" #include "opencv2/opencv.hpp"cv::Mat preprocess_img(cv::Mat& img, int input_w,int input_h) {int w,h,x,y;float r_winput_w/(img.cols*1.0);float r_hinput_h/(img.rows*1.0);if…