一、图的基本概念
图是由顶点集合及顶点间的关系组成的一种数据结构:G = (V, E),其中:
顶点集合V = {x|x属于某个数据对象集}是有穷非空集合;
E = {(x,y)|x,y属于V}或者E = {<x, y>|x,y属于V && Path(x, y)}是顶点间关系的有穷集合,也叫做边的集合。(x, y)表示x到y的一条双向通路,即(x, y)是无方向的;Path<x, y>表示从x到y的一条单向通路,即Path<x, y>是有方向的。
顶点和边:图中结点称为顶点,第i个顶点记作vi。两个顶点vi和vj相关联称作顶点vi和顶点vj之间有一条边,图中的第k条边记作ek,ek = (vi,vj)或<vi,vj>。
有向图和无向图:在有向图中,顶点对<x, y>是有序的,顶点对<x,y>称为顶点x到顶点y的一条边(弧),<x,y>和<y, x>是两条不同的边,比如下图G3和G4为有向图。在无向图中,顶点对(x, y)是无序的,顶点对(x,y)称为顶点x和顶点y相关联的一条边,这条边没有特定方向,(x, y)和(y,x)是同一条边,比如下图G1和G2为无向图。注意:无向边(x, y)等于有向边<x, y>和<y, x>。
完全图:在有n个顶点的无向图中,若有n * (n-1)/2条边,即任意两个顶点之间有且仅有一条边,则称此图为无向完全图,比如上图G1;在n个顶点的有向图中,若有n * (n-1)条边,即任意两个顶点之间有且仅有方向相反的边,则称此图为有向完全图,比如上图G4。
邻接顶点:在无向图中G中,若(u, v)是E(G)中的一条边,则称u和v互为邻接顶点,并称边(u,v)依附于顶点u和v;在有向图G中,若<u, v>是E(G)中的一条边,则称顶点u邻接到v,顶点v邻接自顶点u,并称边<u, v>与顶点u和顶点v相关联。
顶点的度:顶点v的度是指与它相关联的边的条数,记作deg(v)。在有向图中,顶点的度等于该顶点的入度与出度之和,其中顶点v的入度是以v为终点的有向边的条数,记作indev(v);顶点v的出度是以v为起始点的有向边的条数,记作outdev(v)。因此:dev(v) = indev(v) + outdev(v)。注意:对于无向图,顶点的度等于该顶点的入度和出度,即dev(v) = indev(v) = outdev(v)。
路径:在图G = (V, E)中,若从顶点vi出发有一组边使其可到达顶点vj,则称顶点vi到顶点vj的顶点序列为从顶点vi到顶点vj的路径。
路径长度:对于不带权的图,一条路径的路径长度是指该路径上的边的条数;对于带权的图,一条路径的路径长度是指该路径上各个边权值的总和。
简单路径与回路:若路径上各顶点v1,v2,v3,…,vm均不重复,则称这样的路径为简单路径。若路 径上第一个顶点v1和最后一个顶点vm重合,则称这样的路径为回路或环。
子图:设图G = {V, E}和图G1 = {V1,E1},若V1属于V且E1属于E,则称G1是G的子图。
连通图:在无向图中,若从顶点v1到顶点v2有路径,则称顶点v1与顶点v2是连通的。如果图中任意一 对顶点都是连通的,则称此图为连通图。
强连通图:在有向图中,若在每一对顶点vi和vj之间都存在一条从vi到vj的路径,也存在一条从vj到 vi的路径,则称此图是强连通图。
生成树:一个连通图的最小连通子图称作该图的生成树。有n个顶点的连通图的生成树有n个顶点和n-1条边。
二、图的存储结构
因为图中既有节点,又有边(节点与节点之间的关系),因此,在图的存储中,只需要保存:节点和边关系即可。节点保存比较简单,只需要一段连续空间即可,那边关系该怎么保存呢?
2.1邻接矩阵
因为节点与节点之间的关系就是连通与否,即为0或者1,因此邻接矩阵(二维数组)即是:先用一个数组将定点保存,然后采用矩阵来表示节点与节点之间的关系。
注意:
1. 无向图的邻接矩阵是对称的,第i行(列)元素之和,就是顶点i的度。有向图的邻接矩阵则不一定是对称的,第i行(列)元素之后就是顶点i 的出(入)度。
2. 如果边带有权值,并且两个节点之间是连通的,上图中的边的关系就用权值代替,如果两个顶点不通,则使用无穷大代替。
3. 用邻接矩阵存储图的优点是能够快速知道两个顶点是否连通,缺陷是如果顶点比较多,边比较少时,矩阵中存储了大量的0成为系数矩阵,比较浪费空间,并且要求两个节点之间的路径不是很好求。
package graph;
/**
* @Author 12629
* @Description:
*/
public class Constant {
public static final int MAX = Integer.MAX_VALUE;
}
package graph;
import org.omg.CORBA.PUBLIC_MEMBER;
import unionfindset.UnionFindSet;
import java.awt.*;
import java.util.*;
/**
* @Author 12629
* @Description: 使用邻接矩阵来存储图
*/
public class GraphByMatrix {
private char[] arrayV;//顶点数组
private int[][] matrix;//矩阵
private boolean isDirect;//是否是有向图
/**
* 此时
* @param size 代表当前顶点的个数
* @param isDirect
*/
public GraphByMatrix(int size,boolean isDirect) {
this.arrayV = new char[size];
matrix = new int[size][size];
for (int i = 0; i < size; i++) {
Arrays.fill(matrix[i],Constant.MAX);
}
this.isDirect = isDirect;
}
public void initArrayV(char[] array) {
for (int i = 0; i < array.length; i++) {
arrayV[i] = array[i];
}
}
/**
*
* @param srcV 起点
* @param destV 终点
* @param weight 权值
*/
public void addEdge(char srcV,char destV,int weight) {
int srcIndex = getIndexOfV(srcV);
int destIndex = getIndexOfV(destV);
matrix[srcIndex][destIndex] = weight;
//如果是无向图 那么相反的位置 也同样需要置为空
if(!isDirect) {
matrix[destIndex][srcIndex] = weight;
}
}
/**
* 获取顶点V的下标
* @param v
* @return
*/
private int getIndexOfV(char v) {
for (int i = 0; i < arrayV.length; i++) {
if(arrayV[i] == v) {
return i;
}
}
return -1;
}
/**
* 获取顶点的度:有向图 = 入度+出度
* @param v
* @return
*/
public int getDevOfV(char v) {
int count = 0;
int srcIndex = getIndexOfV(v);
for (int i = 0; i < arrayV.length; i++) {
if(matrix[srcIndex][i] != Constant.MAX) {
count++;
}
}
//计算有向图的入度
if(isDirect) {
for (int i = 0; i < arrayV.length; i++) {
if(matrix[i][srcIndex] != Constant.MAX) {
count++;
}
}
}
return count;
}
public void printGraph() {
for (int i = 0; i < arrayV.length; i++) {
System.out.print(arrayV[i]+" ");
}
System.out.println();
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[i].length; j++) {
if(matri