Zookeeper经典应用场景实战

news2025/1/11 20:56:24

1. Zookeeper Java客户端实战

ZooKeeper应用的开发主要通过Java客户端API去连接和操作ZooKeeper集群。可供选择的Java客户端API有:

  • ZooKeeper官方的Java客户端API。
  • 第三方的Java客户端API,比如Curator。

ZooKeeper官方的客户端API提供了基本的操作。例如,创建会话、创建节点、读取节点、更新数据、删除节点和检查节点是否存在等。不过,对于实际开发来说,ZooKeeper官方API有一些不足之处,具体如下:

  • ZooKeeper的Watcher监测是一次性的,每次触发之后都需要重新进行注册。
  • 会话超时之后没有实现重连机制。
  • 异常处理烦琐,ZooKeeper提供了很多异常,对于开发人员来说可能根本不知道应该如何处理这些抛出的异常。
  • 仅提供了简单的byte[]数组类型的接口,没有提供Java POJO级别的序列化数据处理接口。
  • 创建节点时如果抛出异常,需要自行检查节点是否存在。
  • 无法实现级联删除。
    总之,ZooKeeper官方API功能比较简单,在实际开发过程中比较笨重,一般不推荐使用。

1.1 Zookeeper 原生Java客户端使用

引入zookeeper client依赖

<!-- zookeeper client -->
<dependency>
    <groupId>org.apache.zookeeper</groupId>
    <artifactId>zookeeper</artifactId>
    <version>3.8.0</version>
</dependency>

注意:保持与服务端版本一致,不然会有很多兼容性的问题

ZooKeeper原生客户端主要使用org.apache.zookeeper.ZooKeeper这个类来使用ZooKeeper服务。
ZooKeeper常用构造器

ZooKeeper (connectString, sessionTimeout, watcher)
  • connectString:使用逗号分隔的列表,每个ZooKeeper节点是一个host.port对,host 是机器名或者IP地址,port是ZooKeeper节点对客户端提供服务的端口号。客户端会任意选取connectString 中的一个节点建立连接。
  • sessionTimeout : session timeout时间。
  • watcher:用于接收到来自ZooKeeper集群的事件。

使用 zookeeper 原生 API,连接zookeeper集群

public class ZkClientDemo {

    private static final  String  CONNECT_STR="localhost:2181";
    private final static  String CLUSTER_CONNECT_STR="192.168.65.156:2181,192.168.65.190:2181,192.168.65.200:2181";

    public static void main(String[] args) throws Exception {

        final CountDownLatch countDownLatch=new CountDownLatch(1);
        ZooKeeper zooKeeper = new ZooKeeper(CLUSTER_CONNECT_STR,
                4000, new Watcher() {
            @Override
            public void process(WatchedEvent event) {
                if(Event.KeeperState.SyncConnected==event.getState() 
                        && event.getType()== Event.EventType.None){
                    //如果收到了服务端的响应事件,连接成功
                    countDownLatch.countDown();
                    System.out.println("连接建立");
                }
            }
        });
        System.out.printf("连接中");
        countDownLatch.await();
        //CONNECTED
        System.out.println(zooKeeper.getState());

        //创建持久节点
        zooKeeper.create("/user","fox".getBytes(),
                ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);

    }

}

Zookeeper主要方法

  • create(path, data, acl,createMode): 创建一个给定路径的 znode,并在 znode 保存 data[]的 数据,createMode指定 znode 的类型。
  • delete(path, version):如果给定 path 上的 znode 的版本和给定的 version 匹配, 删除 znode。
  • exists(path, watch):判断给定 path 上的 znode 是否存在,并在 znode 设置一个 watch。
  • getData(path, watch):返回给定 path 上的 znode 数据,并在 znode 设置一个 watch。
  • setData(path, data, version):如果给定 path 上的 znode 的版本和给定的 version 匹配,设置 znode 数据。
  • getChildren(path, watch):返回给定 path 上的 znode 的孩子 znode 名字,并在 znode 设置一个 watch。
  • sync(path):把客户端 session 连接节点和 leader 节点进行同步。

方法特点:

  • 所有获取 znode 数据的 API 都可以设置一个 watch 用来监控 znode 的变化。
  • 所有更新 znode 数据的 API 都有两个版本: 无条件更新版本和条件更新版本。如果 version 为 -1,更新为无条件更新。否则只有给定的 version 和 znode 当前的 version 一样,才会进行更新,这样的更新是条件更新。
  • 所有的方法都有同步和异步两个版本。同步版本的方法发送请求给 ZooKeeper 并等待服务器的响 应。异步版本把请求放入客户端的请求队列,然后马上返回。异步版本通过 callback 来接受来 自服务端的响应。

同步创建节点:

@Test
public void createTest() throws KeeperException, InterruptedException {
    String path = zooKeeper.create(ZK_NODE, "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.PERSISTENT);
    log.info("created path: {}",path);
}

异步创建节点:

@Test
public void createAsycTest() throws InterruptedException {
     zooKeeper.create(ZK_NODE, "data".getBytes(), ZooDefs.Ids.OPEN_ACL_UNSAFE,
             CreateMode.PERSISTENT,
             (rc, path, ctx, name) -> log.info("rc  {},path {},ctx {},name {}",rc,path,ctx,name),"context");
    TimeUnit.SECONDS.sleep(Integer.MAX_VALUE);
}

修改节点数据

@Test
public void setTest() throws KeeperException, InterruptedException {

    Stat stat = new Stat();
    byte[] data = zooKeeper.getData(ZK_NODE, false, stat);
    log.info("修改前: {}",new String(data));
    zooKeeper.setData(ZK_NODE, "changed!".getBytes(), stat.getVersion());
     byte[] dataAfter = zooKeeper.getData(ZK_NODE, false, stat);
    log.info("修改后: {}",new String(dataAfter));
}

1.2 Curator开源客户端使用

Curator是Netflix公司开源的一套ZooKeeper客户端框架,和ZkClient一样它解决了非常底层的细节开发工作,包括连接、重连、反复注册Watcher的问题以及NodeExistsException异常等。
Curator是Apache基金会的顶级项目之一,Curator具有更加完善的文档,另外还提供了一套易用性和可读性更强的Fluent风格的客户端API框架。
Curator还为ZooKeeper客户端框架提供了一些比较普遍的、开箱即用的、分布式开发用的解决方案,例如Recipe、共享锁服务、Master选举机制和分布式计算器等,帮助开发者避免了“重复造轮子”的无效开发工作。
Guava is to Java that Curator to ZooKeeper
在实际的开发场景中,使用Curator客户端就足以应付日常的ZooKeeper集群操作的需求。
官网:https://curator.apache.org/

引入依赖
Curator 包含了几个包:

  • curator-framework是对ZooKeeper的底层API的一些封装。
  • curator-client提供了一些客户端的操作,例如重试策略等。
  • curator-recipes封装了一些高级特性,如:Cache事件监听、选举、分布式锁、分布式计数器、分布式Barrier等。
<!-- zookeeper client -->
<dependency>
    <groupId>org.apache.zookeeper</groupId>
    <artifactId>zookeeper</artifactId>
    <version>3.8.0</version>
</dependency>

<!--curator-->
<dependency>
    <groupId>org.apache.curator</groupId>
    <artifactId>curator-recipes</artifactId>
    <version>5.1.0</version>
    <exclusions>
        <exclusion>
            <groupId>org.apache.zookeeper</groupId>
            <artifactId>zookeeper</artifactId>
        </exclusion>
    </exclusions>
</dependency>

创建一个客户端实例
在使用curator-framework包操作ZooKeeper前,首先要创建一个客户端实例。这是一个CuratorFramework类型的对象,有两种方法:

  • 使用工厂类CuratorFrameworkFactory的静态newClient()方法。
// 重试策略 
RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000, 3)
//创建客户端实例
CuratorFramework client = CuratorFrameworkFactory.newClient(zookeeperConnectionString, retryPolicy);
//启动客户端
client.start();
  • 使用工厂类CuratorFrameworkFactory的静态builder构造者方法。
//随着重试次数增加重试时间间隔变大,指数倍增长baseSleepTimeMs * Math.max(1, random.nextInt(1 << (retryCount + 1)))
RetryPolicy retryPolicy = new ExponentialBackoffRetry(1000, 3);

CuratorFramework client = CuratorFrameworkFactory.builder()
                .connectString("192.168.128.129:2181")
                .sessionTimeoutMs(5000)  // 会话超时时间
                .connectionTimeoutMs(5000) // 连接超时时间
                .retryPolicy(retryPolicy)
                .namespace("base") // 包含隔离名称
                .build();
client.start();
  • connectionString:服务器地址列表,在指定服务器地址列表的时候可以是一个地址,也可以是多个地址。如果是多个地址,那么每个服务器地址列表用逗号分隔, 如 host1:port1,host2:port2,host3;port3 。

  • retryPolicy:重试策略,当客户端异常退出或者与服务端失去连接的时候,可以通过设置客户端重新连接 ZooKeeper 服务端。而 Curator 提供了 一次重试、多次重试等不同种类的实现方式。在 Curator 内部,可以通过判断服务器返回的 keeperException 的状态代码来判断是否进行重试处理,如果返回的是 OK 表示一切操作都没有问题,而 SYSTEMERROR 表示系统或服务端错误。
    在这里插入图片描述

  • 超时时间:Curator 客户端创建过程中,有两个超时时间的设置。一个是 sessionTimeoutMs 会话超时时间,用来设置该条会话在 ZooKeeper 服务端的失效时间。另一个是 connectionTimeoutMs 客户端创建会话的超时时间,用来限制客户端发起一个会话连接到接收 ZooKeeper 服务端应答的时间。sessionTimeoutMs 作用在服务端,而 connectionTimeoutMs 作用在客户端。

创建节点
创建节点的方式如下面的代码所示,回顾我们之前课程中讲到的内容,描述一个节点要包括节点的类型,即临时节点还是持久节点、节点的数据信息、节点是否是有序节点等属性和性质。

 @Test
public void testCreate() throws Exception {
    String path = curatorFramework.create().forPath("/curator-node");
    curatorFramework.create().withMode(CreateMode.PERSISTENT).forPath("/curator-node","some-data".getBytes())
    log.info("curator create node :{}  successfully.",path);
}

在 Curator 中,可以使用 create 函数创建数据节点,并通过 withMode 函数指定节点类型(持久化节点,临时节点,顺序节点,临时顺序节点,持久化顺序节点等),默认是持久化节点,之后调用 forPath 函数来指定节点的路径和数据信息。

一次性创建带层级结构的节点

@Test
public void testCreateWithParent() throws Exception {
    String pathWithParent="/node-parent/sub-node-1";
    String path = curatorFramework.create().creatingParentsIfNeeded().forPath(pathWithParent);
    log.info("curator create node :{}  successfully.",path);
}

获取数据

@Test
public void testGetData() throws Exception {
    byte[] bytes = curatorFramework.getData().forPath("/curator-node");
    log.info("get data from  node :{}  successfully.",new String(bytes));
}

更新节点

我们通过客户端实例的 setData() 方法更新 ZooKeeper 服务上的数据节点,在setData 方法的后边,通过 forPath 函数来指定更新的数据节点路径以及要更新的数据。

@Test
public void testSetData() throws Exception {
    curatorFramework.setData().forPath("/curator-node","changed!".getBytes());
    byte[] bytes = curatorFramework.setData().forPath("/curator-node");
    log.info("get data from  node /curator-node :{}  successfully.",new String(bytes));
}

删除节点

@Test
public void testDelete() throws Exception {
    String pathWithParent="/node-parent";
    curatorFramework.delete().guaranteed().deletingChildrenIfNeeded().forPath(pathWithParent);
}

guaranteed:该函数的功能如字面意思一样,主要起到一个保障删除成功的作用,其底层工作方式是:只要该客户端的会话有效,就会在后台持续发起删除请求,直到该数据节点在 ZooKeeper 服务端被删除。

deletingChildrenIfNeeded:指定了该函数后,系统在删除该数据节点的时候会以递归的方式直接删除其子节点,以及子节点的子节点。

异步接口
Curator 引入了BackgroundCallback 接口,用来处理服务器端返回来的信息,这个处理过程是在异步线程中调用,默认在 EventThread 中调用,也可以自定义线程池。

public interface BackgroundCallback
{
    /**
     * Called when the async background operation completes
     *
     * @param client the client
     * @param event operation result details
     * @throws Exception errors
     */
    public void processResult(CuratorFramework client, CuratorEvent event) throws Exception;
}

如上接口,主要参数为 client 客户端, 和 服务端事件 event。
inBackground 异步处理默认在EventThread中执行

@Test
public void test() throws Exception {
    curatorFramework.getData().inBackground((item1, item2) -> {
        log.info(" background: {}", item2);
    }).forPath(ZK_NODE);

    TimeUnit.SECONDS.sleep(Integer.MAX_VALUE);
}

指定线程池

@Test
public void test() throws Exception {
    ExecutorService executorService = Executors.newSingleThreadExecutor();
    
    curatorFramework.getData().inBackground((item1, item2) -> {
        log.info(" background: {}", item2);
    },executorService).forPath(ZK_NODE);

    TimeUnit.SECONDS.sleep(Integer.MAX_VALUE);
}

Curator 监听器

/**
 * Receives notifications about errors and background events
 */
public interface CuratorListener
{
    /**
     * Called when a background task has completed or a watch has triggered
     *
     * @param client client
     * @param event the event
     * @throws Exception any errors
     */
    public void         eventReceived(CuratorFramework client, CuratorEvent event) throws Exception;
}

针对 background 通知和错误通知。使用此监听器之后,调用inBackground 方法会异步获得监听

Curator Caches:
Curator 引入了 Cache 来实现对 Zookeeper 服务端事件监听,Cache 事件监听可以理解为一个本地缓存视图与远程 Zookeeper 视图的对比过程。Cache 提供了反复注册的功能。Cache 分为两类注册类型:节点监听和子节点监听。

node cache:
NodeCache 对某一个节点进行监听

public NodeCache(CuratorFramework client,
                         String path)
Parameters:
client - the client
path - path to cache

可以通过注册监听器来实现,对当前节点数据变化的处理

public void addListener(NodeCacheListener listener)
     Add a change listener
Parameters:
listener - the listener
@Slf4j
public class NodeCacheTest extends AbstractCuratorTest{

    public static final String NODE_CACHE="/node-cache";

    @Test
    public void testNodeCacheTest() throws Exception {

        createIfNeed(NODE_CACHE);
        NodeCache nodeCache = new NodeCache(curatorFramework, NODE_CACHE);
        nodeCache.getListenable().addListener(new NodeCacheListener() {
            @Override
            public void nodeChanged() throws Exception {
                log.info("{} path nodeChanged: ",NODE_CACHE);
                printNodeData();
            }
        });

        nodeCache.start();
    }


    public void printNodeData() throws Exception {
        byte[] bytes = curatorFramework.getData().forPath(NODE_CACHE);
        log.info("data: {}",new String(bytes));
    }
}

path cache:
PathChildrenCache 会对子节点进行监听,但是不会对二级子节点进行监听

public PathChildrenCache(CuratorFramework client,
                         String path,
                         boolean cacheData)
Parameters:
client - the client
path - path to watch
cacheData - if true, node contents are cached in addition to the stat

可以通过注册监听器来实现,对当前节点的子节点数据变化的处理

public void addListener(PathChildrenCacheListener listener)
     Add a change listener
Parameters:
listener - the listener
@Slf4j
public class PathCacheTest extends AbstractCuratorTest{

    public static final String PATH="/path-cache";

    @Test
    public void testPathCache() throws Exception {

        createIfNeed(PATH);
        PathChildrenCache pathChildrenCache = new PathChildrenCache(curatorFramework, PATH, true);
        pathChildrenCache.getListenable().addListener(new PathChildrenCacheListener() {
            @Override
            public void childEvent(CuratorFramework client, PathChildrenCacheEvent event) throws Exception {
                log.info("event:  {}",event);
            }
        });

        // 如果设置为true则在首次启动时就会缓存节点内容到Cache中
        pathChildrenCache.start(true);
    }
}

tree cache:
TreeCache 使用一个内部类TreeNode来维护这个一个树结构。并将这个树结构与ZK节点进行了映射。所以TreeCache 可以监听当前节点下所有节点的事件。

public TreeCache(CuratorFramework client,
                         String path,
                         boolean cacheData)
Parameters:
client - the client
path - path to watch
cacheData - if true, node contents are cached in addition to the stat

可以通过注册监听器来实现,对当前节点的子节点,及递归子节点数据变化的处理

public void addListener(TreeCacheListener listener)
     Add a change listener
Parameters:
listener - the listener
@Slf4j
public class TreeCacheTest extends AbstractCuratorTest{

    public static final String TREE_CACHE="/tree-path";

    @Test
    public void testTreeCache() throws Exception {
        createIfNeed(TREE_CACHE);
        TreeCache treeCache = new TreeCache(curatorFramework, TREE_CACHE);
        treeCache.getListenable().addListener(new TreeCacheListener() {
            @Override
            public void childEvent(CuratorFramework client, TreeCacheEvent event) throws Exception {
                log.info(" tree cache: {}",event);
            }
        });
        treeCache.start();
    }
}

2. Zookeeper在分布式命名服务中的实战

命名服务是为系统中的资源提供标识能力。ZooKeeper的命名服务主要是利用ZooKeeper节点的树形分层结构和子节点的顺序维护能力,来为分布式系统中的资源命名。
哪些应用场景需要用到分布式命名服务呢?典型的有:

  • 分布式API目录
  • 分布式节点命名
  • 分布式ID生成器

2.1 分布式API目录

为分布式系统中各种API接口服务的名称、链接地址,提供类似JNDI(Java命名和目录接口)中的文件系统的功能。借助于ZooKeeper的树形分层结构就能提供分布式的API调用功能。
著名的Dubbo分布式框架就是应用了ZooKeeper的分布式的JNDI功能。在Dubbo中,使用ZooKeeper维护的全局服务接口API的地址列表。大致的思路为:

  • 服务提供者(Service Provider)在启动的时候,向ZooKeeper上的指定节点/dubbo/${serviceName}/providers写入自己的API地址,这个操作就相当于服务的公开。
  • 服务消费者(Consumer)启动的时候,订阅节点/dubbo/{serviceName}/providers下的服务提供者的URL地址,获得所有服务提供者的API。
    在这里插入图片描述

2.2 分布式节点的命名

一个分布式系统通常会由很多的节点组成,节点的数量不是固定的,而是不断动态变化的。比如说,当业务不断膨胀和流量洪峰到来时,大量的节点可能会动态加入到集群中。而一旦流量洪峰过去了,就需要下线大量的节点。再比如说,由于机器或者网络的原因,一些节点会主动离开集群。
如何为大量的动态节点命名呢?一种简单的办法是可以通过配置文件,手动为每一个节点命名。但是,如果节点数据量太大,或者说变动频繁,手动命名则是不现实的,这就需要用到分布式节点的命名服务。
可用于生成集群节点的编号的方案:
(1)使用数据库的自增ID特性,用数据表存储机器的MAC地址或者IP来维护。
(2)使用ZooKeeper持久顺序节点的顺序特性来维护节点的NodeId编号。
在第2种方案中,集群节点命名服务的基本流程是:

  • 启动节点服务,连接ZooKeeper,检查命名服务根节点是否存在,如果不存在,就创建系统的根节点。
  • 在根节点下创建一个临时顺序ZNode节点,取回ZNode的编号把它作为分布式系统中节点的NODEID。
  • 如果临时节点太多,可以根据需要删除临时顺序ZNode节点。

2.3 分布式的ID生成器

在分布式系统中,分布式ID生成器的使用场景非常之多:

  • 大量的数据记录,需要分布式ID。
  • 大量的系统消息,需要分布式ID。
  • 大量的请求日志,如restful的操作记录,需要唯一标识,以便进行后续的用户行为分析和调用链路分析。
  • 分布式节点的命名服务,往往也需要分布式ID。
  • 。。。

传统的数据库自增主键已经不能满足需求。在分布式系统环境中,迫切需要一种全新的唯一ID系统,这种系统需要满足以下需求:
(1)全局唯一:不能出现重复ID。
(2)高可用:ID生成系统是基础系统,被许多关键系统调用,一旦宕机,就会造成严重影响。

有哪些分布式的ID生成器方案呢?大致如下:
1.Java的UUID。
2.分布式缓存Redis生成ID:利用Redis的原子操作INCR和INCRBY,生成全局唯一的ID。
3.Twitter的SnowFlake算法。
4.ZooKeeper生成ID:利用ZooKeeper的顺序节点,生成全局唯一的ID。
5.MongoDb的ObjectId:MongoDB是一个分布式的非结构化NoSQL数据库,每插入一条记录会自动生成全局唯一的一个“_id”字段值,它是一个12字节的字符串,可以作为分布式系统中全局唯一的ID。

基于Zookeeper实现分布式ID生成器
在ZooKeeper节点的四种类型中,其中有以下两种类型具备自动编号的能力

  • PERSISTENT_SEQUENTIAL持久化顺序节点。
  • EPHEMERAL_SEQUENTIAL临时顺序节点。

ZooKeeper的每一个节点都会为它的第一级子节点维护一份顺序编号,会记录每个子节点创建的先后顺序,这个顺序编号是分布式同步的,也是全局唯一的。
可以通过创建ZooKeeper的临时顺序节点的方法,生成全局唯一的ID

@Slf4j
public class IDMaker extends CuratorBaseOperations {

    private String createSeqNode(String pathPefix) throws Exception {
        CuratorFramework curatorFramework = getCuratorFramework();
        //创建一个临时顺序节点
        String destPath = curatorFramework.create()
                .creatingParentsIfNeeded()
                .withMode(CreateMode.EPHEMERAL_SEQUENTIAL)
                .forPath(pathPefix);
        return destPath;
    }

    public String  makeId(String path) throws Exception {
        String str = createSeqNode(path);
        if(null != str){
            //获取末尾的序号
            int index = str.lastIndexOf(path);
            if(index>=0){
                index+=path.length();
                return index<=str.length() ? str.substring(index):"";
            }
        }
        return str;
    }
}

测试

@Test
public void testMarkId() throws Exception {
    IDMaker idMaker = new IDMaker();
    idMaker.init();
    String pathPrefix = "/idmarker/id-";

    for(int i=0;i<5;i++){
        new Thread(()->{
            for (int j=0;j<10;j++){
                String id = null;
                try {
                    id = idMaker.makeId(pathPrefix);
                    log.info("{}线程第{}个创建的id为{}",Thread.currentThread().getName(),
                            j,id);
                } catch (Exception e) {
                    e.printStackTrace();
                }
            }
        },"thread"+i).start();
    }

    Thread.sleep(Integer.MAX_VALUE);

}

测试结果
在这里插入图片描述
基于Zookeeper实现SnowFlakeID算法
Twitter(推特)的SnowFlake算法是一种著名的分布式服务器用户ID生成算法。SnowFlake算法所生成的ID是一个64bit的长整型数字,如图10-2所示。这个64bit被划分成四个部分,其中后面三个部分分别表示时间戳、工作机器ID、序列号。
在这里插入图片描述

SnowFlakeID的四个部分,具体介绍如下:
(1)第一位 占用1 bit,其值始终是0,没有实际作用。
(2)时间戳 占用41 bit,精确到毫秒,总共可以容纳约69年的时间。
(3)工作机器id占用10 bit,最多可以容纳1024个节点。
(4)序列号 占用12 bit。这个值在同一毫秒同一节点上从0开始不断累加,最多可以累加到4095。
在工作节点达到1024顶配的场景下,SnowFlake算法在同一毫秒最多可以生成的ID数量为: 1024 * 4096 =4194304,在绝大多数并发场景下都是够用的。

SnowFlake算法的优点:

  • 生成ID时不依赖于数据库,完全在内存生成,高性能和高可用性。
  • 容量大,每秒可生成几百万个ID。
  • ID呈趋势递增,后续插入数据库的索引树时,性能较高。

SnowFlake算法的缺点:

  • 依赖于系统时钟的一致性,如果某台机器的系统时钟回拨了,有可能造成ID冲突,或者ID乱序。
  • 在启动之前,如果这台机器的系统时间回拨过,那么有可能出现ID重复的危险。
    基于zookeeper实现雪花算法:
public class SnowflakeIdGenerator {

    /**
     * 单例
     */
    public static SnowflakeIdGenerator instance =
            new SnowflakeIdGenerator();


    /**
     * 初始化单例
     *
     * @param workerId 节点Id,最大8091
     * @return the 单例
     */
    public synchronized void init(long workerId) {
        if (workerId > MAX_WORKER_ID) {
            // zk分配的workerId过大
            throw new IllegalArgumentException("woker Id wrong: " + workerId);
        }
        instance.workerId = workerId;
    }

    private SnowflakeIdGenerator() {

    }


    /**
     * 开始使用该算法的时间为: 2017-01-01 00:00:00
     */
    private static final long START_TIME = 1483200000000L;

    /**
     * worker id 的bit数,最多支持8192个节点
     */
    private static final int WORKER_ID_BITS = 13;

    /**
     * 序列号,支持单节点最高每毫秒的最大ID数1024
     */
    private final static int SEQUENCE_BITS = 10;

    /**
     * 最大的 worker id ,8091
     * -1 的补码(二进制全1)右移13位, 然后取反
     */
    private final static long MAX_WORKER_ID = ~(-1L << WORKER_ID_BITS);

    /**
     * 最大的序列号,1023
     * -1 的补码(二进制全1)右移10位, 然后取反
     */
    private final static long MAX_SEQUENCE = ~(-1L << SEQUENCE_BITS);

    /**
     * worker 节点编号的移位
     */
    private final static long WORKER_ID_SHIFT = SEQUENCE_BITS;

    /**
     * 时间戳的移位
     */
    private final static long TIMESTAMP_LEFT_SHIFT = WORKER_ID_BITS + SEQUENCE_BITS;

    /**
     * 该项目的worker 节点 id
     */
    private long workerId;

    /**
     * 上次生成ID的时间戳
     */
    private long lastTimestamp = -1L;

    /**
     * 当前毫秒生成的序列
     */
    private long sequence = 0L;

    /**
     * Next id long.
     *
     * @return the nextId
     */
    public Long nextId() {
        return generateId();
    }

    /**
     * 生成唯一id的具体实现
     */
    private synchronized long generateId() {
        long current = System.currentTimeMillis();

        if (current < lastTimestamp) {
            // 如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过,出现问题返回-1
            return -1;
        }

        if (current == lastTimestamp) {
            // 如果当前生成id的时间还是上次的时间,那么对sequence序列号进行+1
            sequence = (sequence + 1) & MAX_SEQUENCE;

            if (sequence == MAX_SEQUENCE) {
                // 当前毫秒生成的序列数已经大于最大值,那么阻塞到下一个毫秒再获取新的时间戳
                current = this.nextMs(lastTimestamp);
            }
        } else {
            // 当前的时间戳已经是下一个毫秒
            sequence = 0L;
        }

        // 更新上次生成id的时间戳
        lastTimestamp = current;

        // 进行移位操作生成int64的唯一ID

        //时间戳右移动23位
        long time = (current - START_TIME) << TIMESTAMP_LEFT_SHIFT;

        //workerId 右移动10位
        long workerId = this.workerId << WORKER_ID_SHIFT;

        return time | workerId | sequence;
    }

    /**
     * 阻塞到下一个毫秒
     */
    private long nextMs(long timeStamp) {
        long current = System.currentTimeMillis();
        while (current <= timeStamp) {
            current = System.currentTimeMillis();
        }
        return current;
    }
}

3. zookeeper实现分布式队列

常见的消息队列有:RabbitMQ,RocketMQ,Kafka等。Zookeeper作为一个分布式的小文件管理系统,同样能实现简单的队列功能。Zookeeper不适合大数据量存储,官方并不推荐作为队列使用,但由于实现简单,集群搭建较为便利,因此在一些吞吐量不高的小型系统中还是比较好用的。

3.1 设计思路

在这里插入图片描述

  1. 创建队列根节点:在Zookeeper中创建一个持久节点,用作队列的根节点。所有队列元素的节点将放在这个根节点下。
  2. 实现入队操作:当需要将一个元素添加到队列时,可以在队列的根节点下创建一个临时有序节点。节点的数据可以包含队列元素的信息。
  3. 实现出队操作:当需要从队列中取出一个元素时,可以执行以下操作:
  • 获取根节点下的所有子节点。
  • 找到具有最小序号的子节点。
  • 获取该节点的数据。
  • 删除该节点。
  • 返回节点的数据。
/**
 * 入队
 * @param data
 * @throws Exception
 */
public void enqueue(String data) throws Exception {
    // 创建临时有序子节点
    zk.create(QUEUE_ROOT + "/queue-", data.getBytes(StandardCharsets.UTF_8),
            ZooDefs.Ids.OPEN_ACL_UNSAFE, CreateMode.EPHEMERAL_SEQUENTIAL);
}

/**
 * 出队
 * @return
 * @throws Exception
 */
public String dequeue() throws Exception {
    while (true) {
        List<String> children = zk.getChildren(QUEUE_ROOT, false);
        if (children.isEmpty()) {
            return null;
        }

        Collections.sort(children);

        for (String child : children) {
            String childPath = QUEUE_ROOT + "/" + child;
            try {
                byte[] data = zk.getData(childPath, false, null);
                zk.delete(childPath, -1);
                return new String(data, StandardCharsets.UTF_8);
            } catch (KeeperException.NoNodeException e) {
                // 节点已被其他消费者删除,尝试下一个节点
            }
        }
    }
}

3.2 使用Apache Curator实现分布式队列

Apache Curator是一个ZooKeeper客户端的封装库,提供了许多高级功能,包括分布式队列。

public class CuratorDistributedQueueDemo {
    private static final String QUEUE_ROOT = "/curator_distributed_queue";

    public static void main(String[] args) throws Exception {
        CuratorFramework client = CuratorFrameworkFactory.newClient("localhost:2181",
                new ExponentialBackoffRetry(1000, 3));
        client.start();

        // 定义队列序列化和反序列化
        QueueSerializer<String> serializer = new QueueSerializer<String>() {
            @Override
            public byte[] serialize(String item) {
                return item.getBytes();
            }

            @Override
            public String deserialize(byte[] bytes) {
                return new String(bytes);
            }
        };

        // 定义队列消费者
        QueueConsumer<String> consumer = new QueueConsumer<String>() {
            @Override
            public void consumeMessage(String message) throws Exception {
                System.out.println("消费消息: " + message);
            }

            @Override
            public void stateChanged(CuratorFramework curatorFramework, ConnectionState connectionState) {

            }
        };

        // 创建分布式队列
        DistributedQueue<String> queue = QueueBuilder.builder(client, consumer, serializer, QUEUE_ROOT)
                .buildQueue();
        queue.start();

        // 生产消息
        for (int i = 0; i < 5; i++) {
            String message = "Task-" + i;
            System.out.println("生产消息: " + message);
            queue.put(message);
            Thread.sleep(1000);
        }

        Thread.sleep(10000);
        queue.close();
        client.close();
    }
}

3.3 注意事项

使用Curator的DistributedQueue时,默认情况下不使用锁。当调用QueueBuilder的lockPath()方法并指定一个锁节点路径时,才会启用锁。如果不指定锁节点路径,那么队列操作可能会受到并发问题的影响。

在创建分布式队列时,指定一个锁节点路径可以帮助确保队列操作的原子性和顺序性。分布式环境中,多个消费者可能同时尝试消费队列中的消息。如果不使用锁来同步这些操作,可能会导致消息被多次处理或者处理顺序出现混乱。当然,并非所有场景都需要指定锁节点路径。如果您的应用场景允许消息被多次处理,或者处理顺序不是关键问题,那么可以不使用锁。这样可以提高队列操作的性能,因为不再需要等待获取锁。

// 创建分布式队列
QueueBuilder<String> builder = QueueBuilder.builder(client, consumer, serializer, "/order");
//指定了一个锁节点路径/orderlock,用于实现分布式锁,以保证队列操作的原子性和顺序性。
queue = builder.lockPath("/orderlock").buildQueue();
//启动队列,这时队列开始监听ZooKeeper中/order节点下的消息。
queue.start();

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1082308.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Gin框架中的Cookie怎么搞(会话控制)

参考地址 设置和获取 Cookie | Gin Web Framework (gin-gonic.com)https://gin-gonic.com/zh-cn/docs/examples/cookie/ 什么是cookie cookie在互联网上随处可见,具体体现如下: 保持登录状态 保存浏览器的历史记录 大数据随心配,按喜好推送讯息 购物网站加入购物车 都会…

内存概念,进程运行的基本原理(指令,逻辑地址与物理地址的转换,程序运行的过程)

1.内存 内存可存放数据。 程序执行前需要先放到内存中才能被CPU处理&#xff1a;缓和cPU与硬盘之间的速度矛盾。 1.内存地址 内存地址从0开始&#xff0c;每个地址对应个存储单元。 2.存储单元 内存中也有一个一个的“小房间”&#xff0c;每个小房间就是一个“存储单元”…

RS485通讯方式-详解

RS485是美国电子工业协会&#xff08;EIA&#xff09;在1983年批准的一个新的平衡传输标准&#xff0c;也称作差分。 RS485总线通常采用两线间的电压差为2V到6V表示逻辑1&#xff0c;以两线间的电压差为-2V到-6V表示逻辑0。 这种总线以其差分传输方式而闻名&#xff0c;发送端在…

C语言常见题目 过关斩将(2)基础好❓你可知道有关 “素数“ 的三连问❓

我的个人主页&#xff1a;☆光之梦☆的博客_CSDN博客-C语言基础语法&#xff08;超详细&#xff09;领域博主 欢迎各位 &#x1f44d;点赞 ⭐收藏 &#x1f4dd;评论 特别标注&#xff1a;本博主将会长期更新c语言的语法知识&#xff0c;初学c语言的朋友们&#xff0c;可以收藏…

从0开始学go第七天

gin获取表单from中的数据 模拟简单登录页面&#xff1a; <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><title>login</title> </head><body><form action"/login" method&q…

SLAM从入门到精通(launch文件学习)

【 声明&#xff1a;版权所有&#xff0c;欢迎转载&#xff0c;请勿用于商业用途。 联系信箱&#xff1a;feixiaoxing 163.com】 大家应该还记得我们在一开始学习ros的时候&#xff0c;如果需要启动一个节点的话&#xff0c;需要首先打开roscore&#xff0c;接着用rosrun打开对…

Java进击框架:Spring-Bean初始化过程(五)

Java进击框架&#xff1a;Spring-Bean初始化过程&#xff08;五&#xff09; 前言源码初始化配置加载Bean加载Bean对象加载Bean切面 Bean工厂后置处理器注册Bean后置处理器初始化消息源初始化应用程序事件多播器注册监听器完成Bean工厂初始化Bean初始化完成刷新应用上下文创建完…

VSCODE+PHP8.2配置踩坑记录

VSCODEPHP8.2配置踩坑记录 – WhiteNights Site 我配置过的最恶心的环境之一&#xff1a;windows上的php。另一个是我centos服务器上的php。 进不了断点 端口配置和xdebug的安装 这个应该是最常见的问题了。从网上下载完php并解压到本地&#xff0c;打开vscode&#xff0c;安装…

前端 | 前端工程化

文章目录 前端工程化1. Vue项目创建2. Vue项目目录结构3. vue项目开发 前端工程化 1. Vue项目创建 安装插件vue-cli npm install -g vue/cli命令行创建 Vue 项目 vue create vue-project(项目名称)图形化界面创建 VUe 项目 vue ui图形化界面如下&#xff1a; 选择功能&…

如何在edge浏览器中给PDF添加文字批注

我用的edge浏览器是目前最新版的&#xff08;一般自动更新到最新版&#xff09; 最近&#xff0c;我喜欢用edge浏览器查看PDF&#xff0c;节省电脑资源&#xff0c;快捷且方便。 但edge对PDF的标注种类较少&#xff0c;主要是划线和涂色&#xff0c;文字批注功能尚未出现在工具…

【TB作品】基于MSP430G2553单片机的超声波测距与报警系统,原理图,PCB

功能&#xff1a; 1 超声波测距显示 2 按键设置报警上下限 3 蜂鸣器报警 原理图&#xff1a; PCB样式&#xff1a; 实物&#xff1a; 代码&#xff1a; https://github.com/xddun/blog_code_search

PDMS二次开发(二十一)——关于Pipeline工具生成螺栓材料表的计算思路

目录 1.简述2.螺栓元件的数据2.1 A1A等级中螺栓元件库2.2 A1A等级中法兰元件库2.3 A1A要指定螺栓等级2.4 螺栓等级数据解析 3.问题解释 1.简述 因为有好几个网友问到螺栓材料表生成报错的问题&#xff0c;我初步分析可能还是因为螺栓元件库的问题&#xff0c;我这里对Pipeline…

Android约束布局ConstraintLayout流式Flow

Android约束布局ConstraintLayout流式Flow <?xml version"1.0" encoding"utf-8"?> <androidx.constraintlayout.widget.ConstraintLayout xmlns:android"http://schemas.android.com/apk/res/android"xmlns:app"http://schemas.…

Hadoop分布式集群搭建教程

目录 前言环境准备一、创建虚拟机二、虚拟机网络配置三、克隆虚拟机四、Linux系统配置五、Hadoop的部署配置六、Hadoop集群的启动 前言 大数据课程需要搭建Hadoop分布式集群&#xff0c;在这里记录一下搭建过程 环境准备 搭建Haoop分布式集群所需环境&#xff1a; VMware&a…

Redis之缓存一致性

Redis之缓存一致性 1 缓存更新策略1.1 内存淘汰1.2 过期删除1.3 主动更新1.4 三种缓存更新策略的对比 2 更新缓存的两种方式3 缓存更新策略的实现方式3.1 先更新DB&#xff0c;后更新缓存3.2 先更新DB&#xff0c;后删除缓存3.3 先更新缓存&#xff0c;后更新DB3.4 先删除缓存&…

unity2022版本 实现手机虚拟操作杆

简介 在许多移动游戏中&#xff0c;虚拟操纵杆是一个重要的用户界面元素&#xff0c;用于控制角色或物体的移动。本文将介绍如何在Unity中实现虚拟操纵杆&#xff0c;提供了一段用于移动控制的代码。我们将讨论不同类型的虚拟操纵杆&#xff0c;如固定和跟随&#xff0c;以及如…

lv8 嵌入式开发-网络编程开发 16 多路复用poll函数

目录 1 多路复用的多种实现方式 2 poll 2.1 poll 函数应用 3 epoll 函数族&#xff08;效率最高&#xff09; 3.1 epoll_create 创建epoll句柄 3.2 epoll_ctl epoll句柄控制接口 3.3 epoll_wait 等待 epoll 文件描述符上的 I/O 事件 3.4 epoll 函数应用 1 多路复用的多…

数据结构学习笔记——数据结构概论

目录 一、数据与数据元素二、数据类型和抽象数据类型三、数据结构的定义&#xff08;一&#xff09;逻辑结构&#xff08;二&#xff09;存储结构&#xff08;物理结构&#xff09;1、顺序存储结构2、链式存储结构3、索引存储结构4、散列存储结构 &#xff08;三&#xff09;数…

Python 自定义包和模块随机生成6位验证码(详解版)

一、新建一个包&#xff08;两种方法&#xff09; 方法一&#xff1a;先新建一个空目录命名为"小功能包"&#xff0c;然后在新建的目录下新建一个空__init__.py&#xff08;目的是声明当前目录是一个包&#xff09; 方法二&#xff1a;直接在PyCharm用鼠标依次点击F…

【Unity】【VR】如何让Distance Grab抓取物品时限制物品的Rotation

【背景】 遇到这样的场景,希望抓取Canvas时,Canvas不会沿Z轴旋转。 【问题】 发现Freeze Canvas的Rigid Body没有用。 【分析】 应该是RigidBody的限制仅在物理互动下生效,抓取可能不属于物理互动(比如碰撞),所以不生效。 【思路】 还是得写脚本挂载在Interacta…