文章目录
- 一、网络发展史
- 二、网络通信基础
- 三、协议分层
- 四、封装和分用
一、网络发展史
-
独立模式:计算机之间相互独立,每个终端都各自持有客户数据,且当处理一个业务时,按照业务流程进行
-
网络互连:将多台计算机连接在一起,完成数据共享,数据共享本质是网络数据传输,即计算机之间通过网络来传输数据,也称为网络通信
-
原理:随着时代的发展,越来越需要计算机之间互相通信,共享软件和数据,即以多个计算机协同工作来完成业务,就有了网络互连。
-
分类:根据网络互连的规模不同,可以划分为局域网和广域网
(1)局域网 LAN
- 概念
- 局域网是本地,局部组建的一种私有网络
- 局域网内的主机之间能方便的进行网络通信,又称为内网;局域网和局域网之间在没有连接的情况下,是无法通信的
- 组建网络的方式
-
(2)广域网 WAN
- 概念
- 通过路由器,将多个局域网连接起来,在物理上组成很大范围的网络,就形成了广域网
- 广域网内部的局域网都属于其子网
- 有时在不严格的环境下说的广域网,其实是指互联网
- 所谓“局域网”和“广域网”只是一个相对的概念。一个广域网也可以看做一个比较大的局域网
二、网络通信基础
网络互连的目的是进行网络通信,也即是网络数据传输,更具体一点,是网络主机中的不同进程间,基于网络传输数据。此时我们就需要明白数据间是如何传输的
1. IP 地址
-
概念
IP地址主要用于标识网络主机、其他网络设备(如路由器)的网络地址。简单说,IP地址用于定位主机的网络地址。 -
格式
IP地址是一个32位的二进制数,通常被分割为4个“8位二进制数”(也就是4个字节),如:01100100.00000100.00000101.00000110通常用“点分十进制”的方式来表示,即 a.b.c.d 的形式(a,b,c,d都是0~255之间的十进制整数)。如:100.4.5.6
-
特殊IP
127.*的IP地址用于本机环回(loop back)测试,通常是127.0.0.1本机环回主要用于本机到本机的网络通信(系统内部为了性能,不会走网络的方式传输),对于开发网络通信的程序(即网络编程)而言,常见的开发方式都是本机到本机的网络通信
2. 端口号
-
概念
在网络通信中,IP地址用于标识主机网络地址,端口号可以标识主机中发送数据、接收数据的进程。简单说:端口号用于定位主机中的进程,可以区分一个主机上不同的应用程序- 一个网络程序在启动的时候,都需要绑定一个或多个端口号,后续的通信过程都需要依赖端口来展开。mysql 默认绑定的端口号是3306
- 一个进程启动后,系统会随机分配一个端口(启动端口)
-
格式
端口号是0~65535范围的数字,在网络通信中,进程可以通过绑定一个端口号,来发送及接收网络数据 -
注意事项
两个不同的进程,不能绑定同一个端口号,进程绑定一个端口号后,fork一个子进程,可以实现多个进程绑定一个端口号
3. 协议
- 概念
协议,网络协议的简称,网络协议是网络通信(即网络数据传输)经过的所有网络设备都必须共同遵从的一组约定、规则。如怎么样建立连接、怎么样互相识别等。只有遵守这个约定,计算机之间才能相互通信交流。通常由三要素组成:- 语法:数据与控制信息的结构或格式
- 语义:即需要发出何种控制信息,完成何种动作以及做出何种响应
- 时序:事件实现顺序的详细说明,什么时候开始任务,先干什么,采用同步传输还是异步传输
- 协议最终体现为在网络上传输的数据包的格式
- 作用:相当于是提前的约定,让大家都按同样的标准来执行任务。计算机之间的传输媒介是光信号和电信号。通过 “频率” 和 “强弱” 来表示 0 和 1 这样的信息。要想传递各种不同的信息,就需要约定好双方的数据格式
- 知名协议的默认端口
- 系统端口号范围为 0 ~ 65535,其中:0 ~ 1023 为知名端口号,这些端口预留给服务端程序绑定广泛使用的应用层协议,如:
- 22端口:预留给SSH服务器绑定SSH协议
21端口:预留给FTP服务器绑定FTP协议
23端口:预留给Telnet服务器绑定Telnet协议
80端口:预留给HTTP服务器绑定HTTP协议
443端口:预留给HTTPS服务器绑定HTTPS协议 - 以上只是说明 0 ~ 1023 范围的知名端口号用于绑定知名协议,但某个服务器也可以使用其他 1024 ~ 65535 范围内的端口来绑定知名协议
- 22端口:预留给SSH服务器绑定SSH协议
- 系统端口号范围为 0 ~ 65535,其中:0 ~ 1023 为知名端口号,这些端口预留给服务端程序绑定广泛使用的应用层协议,如:
4. 五元组
在TCP/IP协议中,用五元组来标识一个网络通信:
- 源IP:标识源主机 ------------ 寄件人地址
- 源端口号:标识源主机中该次通信发送数据的进程
- 目的IP:标识目的主机 ------------ 收件人地址
- 目的端口号:标识目的主机中该次通信接收数据的进程 ------------ 收件人/寄件人
- 协议号:标识发送进程和接收进程双方约定的数据格式 ------------ 顺丰快递
可以在cmd中,输入 netstat -ano 查看网络数据传输中的五元组信息,如果需要过滤(一般是通过端口号或进程PID过滤),可以使用 netstat -ano | findstr 过滤字符串
三、协议分层
1. 原理
- 网络通信会涉及到一系列非常繁琐且细节的工作,如果靠一个协议解决所有问题,这个协议会非常复杂和庞大,因此需要对协议进行拆分,拆分出来的协议太多,需要再进行分类和分层
- 上层协议调用下层协议,下层协议给上层提供服务支持。给这些协议搞了明确的层级关系,避免了跨层级调用引起的混乱。同时这类似于面向接口编程,上层不关心下层实现的细节。
2. 方式
协议分层主要有两种方式:OSI七层网络模型,TCP/IP五层网络模型。其中OSI过于复杂,并不实用。
(1) TCP / IP五层网络模型
TCP/IP是一组协议的代名词,它还包括许多协议,组成了TCP/IP协议簇。
TCP/IP通讯协议采用了5层的层级结构,每一层都呼叫它的下一层所提供的网络来完成自己的需求。
- 应用层:负责应用程序间沟通,如简单电子邮件传输(SMTP)、文件传输协议(FTP)、网络远程访问协议(Telnet)等。我们的网络编程主要就是针对应用层和传输层。
- 传输层:负责两台主机之间的数据传输(数据从哪出发,到哪结束,只关注起点和终点,不关注中间过程)。如传输控制协议 (TCP),能够确保数据可靠的从源主机发送到目标主机。
- 网络层:负责地址管理和路由选择(路径规划)。例如在IP协议中,通过IP地址来标识一台主机,并通过路由表的方式规划出两台主机之间的数据传输的线路(路由)。路由器(Router)工作在网路层。
- 数据链路层:负责设备之间的数据帧的传送和识别(相邻节点之间数据如何传输)。例如网卡设备的驱动、帧同步(就是说从网线上检测到什么信号算作新帧的开始)、冲突检测(如果检测到冲突就自动重发)、数据差错校验等工作。有以太网、令牌环网,无线LAN等标准。交换机(Switch)工作在数据链路层。
- 物理层:负责光/电信号的传递方式,描述了网络通信中一些基础设施需要遵守的规范。比如现在以太网通用的网线(双绞 线)、早期以太网采用的的同轴电缆(现在主要用于有线电视)、光纤,现在的wifi无线网使用电磁波等都属于物理层的概念。物理层的能力决定了最大传输速率、传输距离、抗干扰性等。集线器(Hub)工作在物理层。
物理层我们考虑的比较少。因此很多时候也可以称为 TCP/IP四层模型(算物理层就是五层,不算就是四层)
(2) 网络设备所在分层
- 对于一台主机,它的操作系统内核实现了从传输层到物理层的内容,也即是TCP/IP五层模型的下四层;
- 对于一台路由器,它实现了从网络层到物理层,也即是TCP/IP五层模型的下三层;
- 对于一台交换机,它实现了从数据链路层到物理层,也即是TCP/IP五层模型的下两层;
- 对于集线器,它只实现了物理层;
注意我们这里说的是传统意义上的交换机和路由器,也称为二层交换机(工作在TCP/IP五层模型的下两层)、三层路由器(工作在TCP/IP五层模型的下三层)。随着技术的发展,已经逐渐出现了更发达的路由器/交换机
3. 网络分层对应
四、封装和分用
- 不同的协议层对数据包有不同的称谓,在传输层叫做段(segment),在网络层叫做数据报(datagram),在链路层叫做帧(frame)。
- 应用层数据通过协议栈发到网络上时,每层协议都要加上一个数据首部(header),称为封装(Encapsulation)。
- 首部信息中包含了一些类似于首部有多长,载荷(payload)有多长,上层协议是什么等信息。
- 数据封装成帧后发到传输介质上,到达目的主机后每层协议再剥掉相应的首部,根据首部中的 “上层协议字段” 将数据交给对应的上层协议处理