在 Amazon SageMaker 上使用 ESMFold 语言模型加速蛋白质结构预测

news2024/9/25 23:22:32

15c52d2a026c2842352ac1946f089c16.gif

蛋白质驱动着许多生物过程,如酶活性、分子输运和细胞支持。通过蛋白质的三维结构,可以深入了解蛋白质的功能以及蛋白质如何与其他生物分子相互作用。测定蛋白质结构的实验方法(如 X 射线晶体学和核磁共振波谱学)既昂贵又耗时。相比之下,最近开发的几种计算方法能够根据蛋白质的氨基酸序列快速准确地预测蛋白质的结构。这些方法对于难以通过实验研究的蛋白质至关重要,例如膜蛋白,它是许多药物的靶标。

在这些方法中,一个众所周知的例子是 AlphaFold,这是一种基于深度学习的算法,因其预测准确而闻名于世;来自 FAIR 的 ESMFold 是另一种基于深度学习的高精度方法,用于根据氨基酸序列预测蛋白质结构。ESMFold 以大型蛋白质语言模型(pLM)为骨干,进行端到端的操作。与 AlphaFold2 不同,这种方法不需要查找或 多序列比对(MSA)步骤,也不依赖外部数据库来生成预测结果。取而代之的是,FAIR Research 团队根据 UniRef 的数百万个蛋白质序列对模型进行了训练。在训练过程中,该模型开发了注意力模式,这些模式优雅地代表了序列中氨基酸之间的进化相互作用。使用 pLM 代替 MSA 后,可使预测时间比其他先进模型快60倍。这种速度使 FAIR 团队能够创建开源的 ESM 宏基因组图谱,该图谱由超过7.7亿个宏基因组蛋白质结构预测组成。

在本文中,我们使用 Hugging Face Hub 上提供的预训练 ESMFold 模型和 Amazon SageMaker,来预测曲妥珠单抗的重链结构,曲妥珠单抗是一种由 Genentech 首次开发的用于治疗 HER2 阳性乳腺癌的 单克隆抗体。如果研究人员想测试序列修饰的效果,快速预测这种蛋白质的结构可能非常有用。这有可能提高患者的生存率或减少药物副作用。这篇文章提供了一个 Jupyter notebook 示例,相关脚本位于以下 GitHub 存储库中:https://github.com/aws-samples/aws-healthcare-lifescience-ai-ml-sample-notebooks/tree/main/workshops/AI_Driven_Protein_Analysis

先决条件

我们建议在 Amazon SageMaker 工作室笔记本电脑中运行这个示例,该笔记本电脑在 ml.r5.xlarge 实例类型上运行 PyTorch 1.13 Python 3.9 CPU 优化的映像。

以视觉形式呈现

曲妥珠单抗的实验结构

首先,我们使用 biopython 库和辅助脚本从 RCSB 蛋白质数据库下载曲妥珠单抗结构:

from Bio.PDB import PDBList, MMCIFParser
from prothelpers.structure import atoms_to_pdb


target_id = "1N8Z"
pdbl = PDBList()
filename = pdbl.retrieve_pdb_file(target_id, pdir="data")
parser = MMCIFParser()
structure = parser.get_structure(target_id, filename)
pdb_string = atoms_to_pdb(structure)

左滑查看更多

接下来,我们使用 py3Dmol 库将结构可视化为交互式 3D 视觉内容:

view = py3Dmol.view()
view.addModel(pdb_string)
view.setStyle({'chain':'A'},{"cartoon": {'color': 'orange'}})
view.setStyle({'chain':'B'},{"cartoon": {'color': 'blue'}})
view.setStyle({'chain':'C'},{"cartoon": {'color': 'green'}})
view.show()

左滑查看更多

下图显示了蛋白质数据库(PDB)中 1N8Z 的 3D 蛋白质结构。在此图中,曲妥珠单抗轻链显示为橙色,重链显示为蓝色(可变区为浅蓝色),HER2 抗原显示为绿色。

3dc7171f4c24fd1bd8945248b6219000.png

我们将首先使用 ESMFold,根据氨基酸序列预测重链(链 B)的结构。然后,将预测结果与上面显示的实验测定的结构进行对比。

使用 ESMFold 

根据曲妥珠单抗重链序列预测其结构

让我们使用 ESMFold 模型来预测重链的结构,并将其与实验结果进行对比。首先,使用 Studio 中预置的 notebook 环境,该环境预装了几个重要的库,如 PyTorch。虽然我们能够使用加速实例类型来提高 notebook 分析的性能,但现在我们改用非加速实例,并在 CPU 上运行 ESMFold 预测。

首先,从 Hugging Face Hub 加载预训练的 ESMFold 模型和标记器:

from transformers import AutoTokenizer, EsmForProteinFolding


tokenizer = AutoTokenizer.from_pretrained("facebook/esmfold_v1")
model = EsmForProteinFolding.from_pretrained("facebook/esmfold_v1", low_cpu_mem_usage=True)

左滑查看更多

接下来,将模型复制到我们的设备(本例中为 CPU),并设置一些模型参数:

device = torch.device("cpu")
model.esm = model.esm.float()
model = model.to(device)
model.trunk.set_chunk_size(64)

左滑查看更多

为了准备用于分析的蛋白质序列,我们需要对其进行标记化处理。这样可以将氨基酸符号(EVQLV…)转换为 ESMFold 模型可以理解的数字格式(6,19,5,10,19,…):

tokenized_input = tokenizer([experimental_sequence], return_tensors="pt", add_special_tokens=False)["input_ids"]
tokenized_input = tokenized_input.to(device)

左滑查看更多

接下来,我们将标记化输入复制到模式中,进行预测,并将结果保存到文件中:

with torch.no_grad():
notebook_prediction = model.infer_pdb(experimental_sequence)
with open("data/prediction.pdb", "w") as f:
f.write(notebook_prediction)

左滑查看更多

对于非加速实例类型(如 r5),这大约需要3分钟。

我们可以通过对比实验结构,来检验 ESMFold 预测的准确性。我们使用密歇根大学 Zhang Lab 开发的 US-Align 工具来完成这项工作:

from prothelpers.usalign import tmscore


tmscore("data/prediction.pdb", "data/experimental.pdb", pymol="data/superimposed")

左滑查看更多

e4a53f96267c7881d7681d8e2b839589.png

模板建模得分(TM-score)是评测蛋白质结构相似性的指标。得分为 1.0 表示完全匹配。得分高于 0.7 表示两个蛋白质具有相同的骨干结构。得分高于 0.9 表示蛋白质在下游使用中具有功能互换性。在我们的示例中,TM-Score 达到 0.802,表示 ESMFold 预测可能适用于结构评分或配体结合实验等应用,但可能不适用于分子置换等需要极高精度的使用案例。

我们可以通过可视化对齐结构来验证这一结果。这两个结构的重叠程度很高,但并不完全重叠。蛋白质结构预测是一个快速发展的领域,许多研究团队都在开发越来越精确的算法!

将 ESMFold 部署为 

SageMaker 推理端点

在 notebook 中运行模型推理可用于实验目的,但如果需要将模型与应用程序集成呢?或者是与 MLOps 管道集成呢?在这种情况下,更好的选择是将模型部署为推理端点。在下面的示例中,我们将 ESMFold 作为 SageMaker 实时推理端点部署在加速实例上。SageMaker 实时端点提供了一种可扩展、经济高效且安全的方式来部署和托管机器学习(ML)模型。通过自动扩缩,您可以调整运行端点的实例数量以满足应用程序的需求,从而优化成本并确保高可用性。

利用预置的 Hugging Face 的 SageMaker 容器,可以轻松地为常见任务部署深度学习模型。然而,对于像蛋白质结构预测这样的新使用案例,我们需要定义一个自定义的 inference.py 脚本,来加载模型、运行预测和格式化输出内容。该脚本包含的代码与我们在 notebook 中使用的代码基本相同。我们还创建了一个 requirements.txt 文件来定义一些 Python 依赖关系,供我们的端点使用。您可以在 GitHub 存储库中看到我们创建的文件:https://github.com/aws-samples/aws-healthcare-lifescience-ai-ml-sample-notebooks/tree/main/workshops/AI_Driven_Protein_Analysis

在下图中,曲妥珠单抗重链的实验(蓝色)和预测(红色)结构非常相似,但并不完全相同。

5afd9910597f091fb5128054c8dbc6ef.png

在 code 目录中创建了必要的文件后,我们使用 SageMaker HuggingFaceModel 类部署模型。该类使用一个预置的容器,简化将 Hugging Face 模型部署到 SageMaker 的过程。请注意,创建端点可能需要 10 分钟或更长时间,具体取决于我们区域中 ml.g4dn 实例类型的可用性。

from sagemaker.huggingface import HuggingFaceModel
from datetime import datetime


huggingface_model = HuggingFaceModel(
model_data = model_artifact_s3_uri, # Previously staged in S3
name = f"emsfold-v1-model-" + datetime.now().strftime("%Y%m%d%s"),
transformers_version='4.17',
pytorch_version='1.10',
py_version='py38',
role=role,
source_dir = "code",
entry_point = "inference.py"
)


rt_predictor = huggingface_model.deploy(
initial_instance_count = 1,
instance_type="ml.g4dn.2xlarge",
endpoint_name=f"my-esmfold-endpoint",
serializer = sagemaker.serializers.JSONSerializer(),
deserializer = sagemaker.deserializers.JSONDeserializer()
)

左滑查看更多

完成端点部署后,我们可以重新提交蛋白质序列,并显示预测的前几行内容:

endpoint_prediction = rt_predictor.predict(experimental_sequence)[0]
print(endpoint_prediction[:900])

左滑查看更多

由于我们将端点部署到加速实例中,因此预测应该只需几秒钟。结果中的每一行对应于一个原子,包括氨基酸标识、三个空间坐标和表示该位置预测置信度的 pLDDT 分数。

ab3b73f7857ccb616df667c8332d7ce1.png

使用与以前相同的方法,我们可以看到 notebook 和端点的预测结果完全相同。

747bcd91cd4e9b65fd9fb1fea4462398.png

如下图所示,在 notebook 中生成的 ESMFold 预测结果(红色)与端点生成的预测结果(蓝色)完全一致。

7fcc8a1224198c21d7f4146091047873.png

清理

为了避免产生进一步的费用,我们删除了推理端点和测试数据:

rt_predictor.delete_endpoint()
bucket = boto_session.resource("s3").Bucket(bucket)
bucket.objects.filter(Prefix=prefix).delete()
os.system("rm -rf data obsolete code")

左滑查看更多

小结

蛋白质结构计算预测是了解蛋白质功能的重要工具。除基础研究外,AlphaFold 和 ESMFold 等算法在医学和生物技术领域也有很多应用。利用这些模型生成的结构洞察,有助于我们更好地了解生物分子是如何相互作用的。这样就能为患者提供更好的诊断工具和疗法。

在这篇文章中,我们将展示如何使用 SageMaker 将 Hugging Face Hub 的 ESMFold 蛋白质语言模型部署为可扩展的推理端点。有关在 SageMaker 上部署 Hugging Face 模型的更多信息,请参阅结合使用 Hugging Face 与 Amazon SageMaker (https://docs.aws.amazon.com/sagemaker/latest/dg/hugging-face.html)。您还可以在 Awesome Protein Analysis on Amazon GitHub 存储库中找到更多蛋白质科学示例。

Original URL: 

https://aws.amazon.com/blogs/machine-learning/accelerate-protein-structure-prediction-with-the-esmfold-language-model-on-amazon-sagemaker/

本篇作者

d3a8271a40bb407f6aeb401f4f1d7829.png

Brian Loyal

Amazon Web Services 全球医疗保健和生命科学团队的高级人工智能/机器学习解决方案架构师。他在生物技术和机器学习领域拥有超过17年的经验,热衷于协助客户解决基因组和蛋白质组学方面的难题。在业余时间,他喜欢烹饪,享受与朋友和家人的就餐时光。

29a19c277b4639f119225d93f0aae855.jpeg

Shamika Ariyawansa

Amazon Web Services 全球医疗保健和生命科学团队的人工智能/机器学习专业解决方案架构师。他热衷于与客户合作,通过提供技术指导,促进客户在亚马逊云科技上进行创新和构建安全的云解决方案,从而加快客户采用人工智能和机器学习的速度。工作之余,他喜欢滑雪和越野运动。

80722d25094bae173fcdd0443c3a5f49.png

Yanjun Qi 

Amazon Machine Learning 解决方案实验室的高级应用科学经理。她通过创新和运用机器学习,协助亚马逊云科技客户加快采用人工智能和云技术的速度。

295374b5e3ff1a0769e8ce78be57b470.gif

星标不迷路,开发更极速!

关注后记得星标「亚马逊云开发者」

c7e7f7ded3c2cc49a3e743bbe34a195e.gif

听说,点完下面4个按钮

就不会碰到bug了!

1cbf0cb183eff9c930b38b7512528232.gif

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1078959.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

深度学习DAY3:FFNNLM前馈神经网络语言模型

1 神经网络语言模型NNLM的提出 文章:自然语言处理中的语言模型预训练方法(ELMo、GPT和BERT) https://www.cnblogs.com/robert-dlut/p/9824346.html 语言模型不需要人工标注语料(属于自监督模型),所以语言…

VRRP 虚拟路由器冗余协议的解析和配置

VRRP的解析 个人简介 原理和HSRP的差不多,少了一些状态就只有了三种状态 还有不同的就是VRRP严格按照抢占要求 一个VRRP组中具有最高优先级的设备成为Master路由器缺省优先级为100若优先级相同,具有最高接口IP地址最大的路由器成为Master路由器抢占(Pr…

uniapp 首页制作

uniapp拨打固定的电话 function Hotline() {// 拨打电话uni.makePhoneCall({phoneNumber: 19969547693})}页面跳转 //普通跳转function homepage() {uni.navigateTo({url: /pages/homepage/homepage});}//二、uni.redirectTo关闭当前页面,跳转到应用内的某个页面。…

Qt源码调试

在实际Qt开发中如果遇到Qt内部的问题,往往只能通过调试源代码解决。可是从Qt5.9.9版本开始安装包中就不提供pdb文件。我安装的Qt5.12.12版本目录路径D:\Qt\Qt5.12.12\5.12.12\msvc2017_64\bin下面并没有dll配套的pdb文件。但是如果自己编译源码又太费时间。 今天在观…

踩雷react-useRef钩子函数

今天测试提了一个bug,之前做的有个需求,在触发事件发起请求后,成功响应返回的新的数据没有第一时间渲染到网页上。 方法也都成功更新了数据,就是渲染会慢1-2分钟,排错排了老半天,最后找到了原因。 一般情…

CentOS 安装MySQL 详细教程

参考:https://www.cnblogs.com/dotnetcrazy/p/10871352.html 参考:https://www.cnblogs.com/qiujz/p/13390811.html 参考:https://blog.csdn.net/darry1990/article/details/130419433 一、安装 一、进入安装目录 将账户切换到root账户下,进入local目录下 cd /usr…

mysql面试题42:主键使用自增ID还是UUID,并且说下原因

该文章专注于面试,面试只要回答关键点即可,不需要对框架有非常深入的回答,如果你想应付面试,是足够了,抓住关键点 其他的分布式主键使用方案,可以看下这篇文章:《有哪些合适的分布式主键方案》 面试官:主键使用自增ID还是UUID,并且说下原因 自增ID 自增ID(Auto I…

免费主机|永久免费空间|php虚拟主机|博客主机|论坛主机|免费域名|云主机

免费主机|永久免费空间|php虚拟主机|博客主机|论坛主机|免费域名|云主机 在出教程之前准备好久,测试搭建轻量论坛无压力 选用稳定免费域名➕免费主机分销给,可以套CDN使用 坚持免费时间是大厂不能媲美,刚开始做网站时用的是这个分销&#…

分类预测 | MATLAB实现KOA-CNN-GRU开普勒算法优化卷积门控循环单元数据分类预测

分类预测 | MATLAB实现KOA-CNN-GRU开普勒算法优化卷积门控循环单元数据分类预测 目录 分类预测 | MATLAB实现KOA-CNN-GRU开普勒算法优化卷积门控循环单元数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.MATLAB实现KOA-CNN-GRU开普勒算法优化卷积门控循环单…

华为OD机考算法题:找终点

目录 题目部分 解读与分析 代码实现 题目部分 题目找终点难度易题目说明给定一个正整数数组,设为nums,最大为100个成员,求从第一个成员开始,正好走到数组最后一个成员,所使用的最少步骤数。 要求: 1.第…

系统架构师备考倒计时26天(每日知识点)

详细的项目范围说明书,是项目成功的关键。 范围定义的输入包括以下内容: ① 项目章程。如果项目章程或初始的范围说明书没有在项目执行组织中使用,同样的信息需要进一步收集和开发,以产生详细的项目范围说明书。 ② 项目范围管理计划。 ③ 组…

性能优化-中间件tomcat调优

Tomcat作用 主要有三个: 管理Servlet应用的生命周期。Tomcat可以管理和控制Servlet应用程序的启动、停止、暂停和恢复等生命周期过程,确保Servlet应用的稳定运行和有序管理。把客户端请求的url映射到对应的servlet。Tomcat作为一个Web服务器,可以将客户端发送的HTTP请求URL…

【算法-贪心】无重叠区间-力扣 435 题

💝💝💝欢迎来到我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:kuan 的首页,持续学…

c++视觉处理----固定阈值操作:Threshold()函数,实时处理:二值化,反二值化,截断,设为零,反向设为零

固定阈值操作: Threshold()函数 cv::threshold() 函数是OpenCV中用于执行固定阈值二值化操作的函数。它可以用来将图像中的像素值根据用户定义的阈值转换为二进制值(0或255),以便进行图像分割、物体检测和特征提取等任务。 cv::…

迁移Linux服务器用户数据(将一个服务器的Linux用户数据迁移到另一个Linux服务器用户的流程)

文章目录 1、打包源Linux服务器用户的数据2、发送源Linux服务器用户的数据3、查看目的服务器用户接受到的数据 1、打包源Linux服务器用户的数据 先来到根目录,再使用tar命令打包数据:tar czvf root.zip.gz ./* 2、发送源Linux服务器用户的数据 在根目…

【深度学习】深度学习实验二——前馈神经网络解决上述回归、二分类、多分类、激活函数、优化器、正则化、dropout、早停机制

一、实验内容 实验内容包含要进行什么实验,实验的目的是什么,实验用到的算法及其原理的简单介绍。 1.1 手动实现前馈神经网络解决上述回归、二分类、多分类问题 分析实验结果并绘制训练集和测试集的loss曲线。 原理介绍:回归问题使用的损失函…

【手写数字识别】GPU训练版本

SVM Adaboost Bagging 完整代码 I import torch import torch.nn.functional as F from torch.utils.data import DataLoader, TensorDataset from torchvision import transforms, datasets import matplotlib.pyplot as plt# 超参数 batch_size 64 num_epochs 10# 数据…

计算机网络第三章——数据链路层(二)

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 3.4.2 停止等待协议为什么要有停止等待协议无差错情况有差错的情况 停等协议性能分析脑图时刻 3.4.3 后退n帧协议后退n帧协议中的滑动窗口GBN发送方必须响应的三件事…

智能晾衣架丨以科技解放双手

以往的晾衣架大多是平放式、手摇式居多,为衣物的晾晒提供了一个“栖身之所。”随着科技的日新月异,智能家居的产品越来越多。晾衣架也不例外,一款带有语音控制升降、同时具备照明和消毒的多功能衣架也已深入生活,正被人们所接受。…

算法题系列12·字符串判断子序列

目录 题目描述 实现 题目描述 给定字符串 s 和 t ,判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是"…