长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析、生物量估算与趋势分析等领域中的实践技术应用

news2025/1/11 14:19:56

【查看原文】长时间序列遥感数据处理及在全球变化、物候提取、植被变绿与固碳分析、生物量估算与趋势分析等领域中的实践技术应用

植被是陆地生态系统中最重要的组分之一,也是对气候变化最敏感的组分,其在全球变化过程中起着重要作用,能够指示自然环境中的大气、水、土壤等成分的变化,其年际和季节性变化可以作为地球气候变化的重要指标。此外,由于生态工程保护建设和植被自然生长等因素,中国陆地生态系统发挥了重要的碳汇作用。因此,定量评估植被时空动态变化是制定生态系统可持续发展目标和衡量生态系统固碳潜力的重要前提,卫星遥感数据衍生的生态参量产品为研究长时间序列全球及区域植被时空变化提供了重要数据源。目前已经从卫星获取的遥感数据反演了许多长时序生物物理参量产品,如GIMMS3g NDVI/LAI/FAPAR、MODIS NDVI/LAI/FAPAR/ GPP、GLASS LAI/FVC/GPP等,并且已经广泛应用于全球或区域尺度植被变化趋势及格局分析。

【内容简述】:

专题一:长时序遥感产品在全球变化/植被变绿/植被物候等方面的应用
Science/Nature/PNAS等相关文章
长时序遥感数据产品介绍
长时序遥感数据产品分析方法
长时序遥感数据产品质量评价

专题二:MODIS遥感数据产品预处理
基于MODIS TOOL的HDF影像拼接/子区截取/格式转换
基于MODIS TOOL的长时序海量遥感数据的自动批处理程序
基于MATLAB的遥感产品数值读取
基于MATLAB的产品质量控制(QC)图层读取及含义解读
经QC后的产品最大值/均值/中值等合成

专题三:长时序MODIS遥感数据产品时间序列重构
遥感数据异常值/离群值outliers检测方法
年内时间序列遥感数据重构以去除噪声点(滤波、多项式拟合、…)
长时序逐年份遥感产品年均/最大值、月均/最大值、季节均/最大值批处理运算
距平anomaly及变异系数coefficient of variation计算
不良天气(如云)对长时序遥感数据分析的影响

专题四:基于GIMMS 3g和MODIS NDVI构建更长时序遥感数据
GIMMS 3g和MODIS NDVI产品相关性分析
重叠时间段内GIMMS 3g和MODIS NDVI产品融合
基于GIMMS 3g和MODIS NDVI产品的更长时间序列产品生成

专题五:植被物候提取与分析实践应用
年内时间序列遥感数据重构方法
多种植被物候提取方法实现:threshold/logistic/derivative/…
生长季开始/长度/结束日期提取
区域植被SOS/LOS/EOS制图
年际间植被物候变化趋势分析

专题六:植被变绿趋势分析实践应用
长时序年际间植被变化趋势分析方法
植被变绿/变黄趋势判断准则
基于一元线性回归的植被变化趋势判断
基于Manner-Kendall(M-K)的植被变化检验
基于变异系数法(CV)的植被变化稳定性分析
区域结果成图显示与空间格局分析

专题七:植被变绿与生态系统固碳一致性分析
植被变绿意味着生态系统固碳增强吗?-来自长时序遥感产品的启示
长时序NDVI变化趋势分析
长时序LAI变化趋势分析
长时序GPP变化趋势分析
长时序NDVI/LAI/GPP变化趋势综合研判

专题八:草地生长关键参数/生物量遥感估算及趋势分析
草地LAI/覆盖度/生物量遥感估算原理
PROSAIL辐射传输模型应用
PROSAIL模型参数敏感性分析
基于PROSAIL模型草地关键参数遥感反演
长时序草地生长变化趋势分析

【其它相关推荐】:

高光谱数值建模技术及在植被、水体、土壤信息提取领域应用技术

如何利用ArcGIS探究环境与生态因子对水体、土壤、大气污染物等影响

陆面生态水文模拟与多源遥感数据同化的实践技术应用

无人机遥感在农林信息提取中的实现方法与 GIS 融合制图

PROSAIL 模型前向模拟与植被参数遥感提取代码实现

无人机生态环境监测、图像处理与 GIS 数据分析综合应用

基于PyTorch深度学习无人机遥感影像目标检测、地物分类及语义分割教程

农林生态专业软件模型:DSSAT、Meta 分析、CASA、Biome-BGC、CENTURY、CMIP6、InVEST模型等

统计语言类教程:贝叶斯统计学、Copula、SEM、极值统计学、混合效应模型、PyTorch深度学习、科研数据可视化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/107853.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

云知声: 基于 JuiceFS 的超算平台存储实践

云知声从一家专注于语音及语言处理的技术公司,现在技术栈已经发展到具备图像、自然语言处理、信号等全栈式的 AI 能力,是国内头部人工智能独角兽企业。公司拥抱云计算,在智慧医疗、智慧酒店、智慧教育等方面都有相应的解决方案。 Atlas 是云知…

技术栈入门------RabbitMQ

Direct交换机是路由键精准匹配 Fanout交换机是不看路由键 ,只要你消息发给了某个交换机,这个交换机就立马把消息转给绑定了这个交换机的所有队列,所以速度最快 Topic交换机可以把一个消息根据交换机和消息队列的绑定的路由键进行匹配&#xf…

没有二十年功力,写不出Thread.sleep(0)这一行“看似无用”的代码!

你好呀,我是喜提七天居家隔离的歪歪。 这篇文章要从一个奇怪的注释说起,就是下面这张图: 我们可以不用管具体的代码逻辑,只是单单看这个 for 循环。 在循环里面,专门有个变量 j,来记录当前循环次数。 第…

项目实战之旅游网(一)项目介绍 项目搭建

目录 一.项目介绍 1.功能介绍 2.技术选型 3.实体类 二.项目搭建 1.创建项目 2.adminLTE 3.编写后端首页 4.提取统一后台模板 5.重构后台首页 ************************************************************************* 项目代码地址:等写完这个项目我…

jsoup

1.什么是jsoup jsoup&#xff1a;Java HTML解析器&#xff0c;专为HTML编辑&#xff0c;清理&#xff0c;抓取和XSS安全而构建 2.依赖 <dependency><!-- jsoup HTML parser library https://jsoup.org/ --><groupId>org.jsoup</groupId><artifac…

干货!深入学习必学的模型微调

学习目标 知道微调的原理能够利用微调模型来完成图像的分类任务1.微调 如何在只有6万张图像的MNIST训练数据集上训练模型。学术界当下使用最广泛的大规模图像数据集ImageNet&#xff0c;它有超过1,000万的图像和1,000类的物体。然而&#xff0c;我们平常接触到数据集的规模通…

浅析JWT

Cookie-session 我们都知道JWT一般用于用户登录等需要记住的操作&#xff0c;在谈论JWT之前就不得不谈谈以前的cookie-session登录了 。因为http协议是一种无状态协议&#xff0c;即每次服务端接收到客户端的请求时&#xff0c;都是一个全新的请求&#xff0c;服务器并不知道客…

【从零开始学微服务】08.引入微服务架构的时机

大家好&#xff0c;欢迎来到万猫学社&#xff0c;跟我一起学&#xff0c;你也能成为微服务专家。 在了解引入微服务架构的时机之前&#xff0c;架构设计时一般需要遵循的三个原则。 架构设计三个原则 架构设计一般需要遵循以下三个原则&#xff1a; 合适原则&#xff1a;合适…

NeurIPS'22 | APG:面向CTR预估的自适应参数生成网络

丨目录&#xff1a; 摘要 背景 Method 实验 结语▐ 摘要目前基于深度学习的CTR预估模型&#xff08;即 Deep CTR Models&#xff09;被广泛的应用于各个应用中。传统的 Deep CTR Models 的学习模式是相对静态的&#xff0c;即所有的样本共享相同的网络参数。然而&#xff0c;由…

IntelliJ IDEA中我最爱的10个快捷操作

1. psvm/main快速生成 main() 方法 在日常开发中&#xff0c;我们经常需要写main()方法&#xff0c;这时候您也可以使用main或者psvm命令快速地帮助我们创建出main()方法。 2.sout快速生成println()方法 打印输出一些内容到控制台也是频率很高的一个行为&#xff0c;我们可以…

Pytest断言

&#x1f534;pytest 允许使用标准的python assert 用于验证Python测试中的期望和值。所以并不像unittest的那么丰富。但是我们可以重写。 ❞小例子--介绍 import pytestclass Testnew:def test_num(self):assert 1 "1"def test_dic(self):assert {"QA":…

MySql索引下推知识分享

作者&#xff1a;刘邓忠 Mysql 是大家最常用的数据库&#xff0c;下面为大家带来 mysql 索引下推知识点的分享&#xff0c;以便巩固 mysql 基础知识&#xff0c;如有错误&#xff0c;还请各位大佬们指正。 1 什么是索引下推 索引下推 (Index Condition Pushdown&#xff0c;…

技术分享 | 测试的本质是什么?

本文将分别浅谈不同阶段的业务、不同端的业务、不同类型的业务的测试差异&#xff0c;再抽离其中的测试目标/本质。仅为笔者个人观点&#xff0c;欢迎批评指正。 一、不同阶段业务对测试的需求不同 不同阶段业务对测试的需求不同。这点几乎经历过的人员都心有戚戚焉。 从0到1的…

盘点导致Spring事务失效的4个场景

1&#xff0c;非运行时异常导致事务无法回滚 我们知道&#xff0c;Spring是通过AOP的方式来实现事务的&#xff0c;而在处理事务的过程中&#xff0c;Spring只有捕获到RuntimeException或者Error的时候才会触发回滚操作&#xff0c;如果我们在代码中抛出的是非运行时异常&…

Web前端学习之虚拟DOM如何进化为真实DOM

Vue和React的Render函数中都涉及到了Virtual DOM的概念&#xff0c;Virtual DOM也是性能优化上的重要一环&#xff0c;同时突破了直接操作真实DOM的瓶颈&#xff0c;本文带着以下几个问题来阐述Virtual DOM。 1.为什么要操作虚拟 DOM? 2.什么是虚拟 DOM? 3.手把手教你实现…

Word内容解析之图表数据获取

最近遇到一个问题&#xff0c;Word里有个从Excel直接复制进去的图&#xff0c;但那个Excel已经找不到了&#xff0c;无法通过编辑数据获取到表格的数据。这个其实可以用getdata等软件获取&#xff0c;或者鼠标点在表上的点就可以显示数据&#xff0c;再把数据录下来&#xff0c…

更加灵活、经济、高效的训练 — 新一代搜推广稀疏大模型训练范式GBA

作者&#xff1a;苏文博、张远行 近日&#xff0c;阿里巴巴在国际顶级机器学习会议NeurIPS 2022上发表了新的自研训练模式 Gloabl Batch gradients Aggregation&#xff08;GBA&#xff0c;论文链接&#xff1a;https://arxiv.org/abs/2205.11048&#xff09;&#xff0c;由阿里…

模拟电子技术(七)波形的发生和信号的转换

&#xff08;七&#xff09;波形的发生和信号的转换正弦波振荡电路RC正弦波振荡电路LC正弦波振荡电路正弦波振荡例题电压比较器单限比较器过零比较器一般单限比较器滞回比较器窗口比较器电压比较器例题非正弦波发生电路矩形波发生电路三角波发生电路锯齿波发生电路信号转换电路…

Visual Studio 调试无法启动调试,拒绝访问

方法一 win更新了不兼容 &#xff0c;卸载更新。 1、单击开始菜单&#xff0c;选择【设置】如下图&#xff1b; 2、然后再进入【更新和安全】选项&#xff0c;如下图&#xff1b; 3、查看已安装更新历史记录&#xff0c;如下图红圈 4、这个页面详细列出了最新的更新&#xf…

绿盟SecXOps安全智能分析技术白皮书 安全分析模型核心服务部署

安全分析模型核心服务部署 ModelOps 对所有的人工智能 模型&#xff08;图形模型、语言模型、基于规则的模型&#xff09;以及决策模型的整个生命周期 进行管理&#xff0c;确保对生产中的所有模型进行独立验证和问责&#xff0c;其核心功能涵盖了模型存储、模型测试、模型回滚…