CancerGPT :基于大语言模型的罕见癌症药物对协同作用少样本预测研究

news2025/1/11 14:19:07

今天我们一起来剖析一篇发表于《npj Digital Medicine》的论文——《CancerGPT for few shot drug pair synergy prediction using large pretrained language models》。该研究聚焦于一个极具挑战性的前沿领域:如何利用大语言模型(LLMs)在数据极为稀缺的罕见癌症组织中,实现对药物对协同作用的精准预测。(欢迎关注“赛文AI药学”,获取更多AI与药学的内容)

一、 引言:罕见癌症药物对协同作用预测的挑战与机遇

罕见癌症因其发病率低,患者群体小,导致药物研发长期面临实验数据匮乏的严峻挑战。传统的药物对协同作用预测方法,通常依赖于大量的实验数据进行模型训练,在罕见癌症领域难以有效应用。现有研究主要集中于常见癌症类型,或需要高维度的基因组和化学特征数据,这些数据在罕见癌症组织中获取困难且成本高昂。因此,开发针对罕见癌症的低数据依赖型药物对协同作用预测方法,具有重要的临床意义和科学价值。近年来,大语言模型(Large Language Models, LLMs)在自然语言处理领域展现出强大的少样本学习能力,为解决这一难题提供了新的思路。

二、 方法:基于 LLMs 的 CancerGPT 预测模型构建

本研究提出了一种新颖的基于 LLMs 的少样本药物对协同作用预测模型——CancerGPT。该模型的核心创新在于将药物对协同作用预测问题转化为自然语言处理任务,利用 LLMs 从海量生物医学文献中学习到的先验知识,弥补结构化数据的不足。CancerGPT 的构建流程主要包括以下几个关键步骤:

  1. 表格数据自然语言化: 将药物对、细胞系、组织类型及药物敏感性等表格数据转换为规范化的自然语言文本描述。

  2. 任务导向型提示工程: 设计针对药物对协同作用预测任务的特定提示语(Prompt),引导 LLMs 输出二元分类结果(即协同或非协同)。

  3. 模型预训练与微调: 选取 GPT-2、GPT-3 及 SciFive 等多个 LLMs 作为基础模型,并利用常见癌症药物对协同作用数据集对 GPT-2 进行预训练,得到 CancerGPT 模型。

  4. 少样本微调策略: 针对七种罕见癌症组织类型,分别采用少量样本(k-shot,k 值范围为 0-128)对预训练模型进行微调,以评估模型在数据稀缺条件下的预测性能。

三、 实验:模型性能评估与对比分析

在七种罕见癌症组织数据集上,对 CancerGPT 模型及其他基线模型(包括 XGBoost、TabTransformer 及 Collaborative Filtering)进行了系统性的性能评估。实验结果重点关注以下几个方面:

  1. 数据分布依赖性分析: 实验结果表明,当存在与目标组织分布一致的充足外部数据时,传统数据驱动模型表现更佳;而在外部数据缺乏或分布不一致时,CancerGPT 表现出显著优势。

  2. 不同 LLMs 模型性能比较: 经过针对性微调的 CancerGPT 模型准确率最高;GPT-3 模型展现出较大的性能提升潜力;针对生物医学文献预训练的 SciFive 模型并未在所有数据集上超越 GPT-2。这表明针对特定下游任务进行微调对于提升 LLMs 性能至关重要。

  3. 模型参数规模与性能关系: 参数量较小的 CancerGPT (124M) 性能优于参数量更大的 GPT-3 (175B),表明在特定任务中,模型性能并非单纯依赖于参数规模,精细化的微调策略可能更为关键。

  4. 微调策略对比: 全模型参数微调通常优于仅微调最后一层参数,但性能提升幅度有限。这表明 LLMs 的最后一层已经编码了丰富的先验知识,仅通过微调最后一层也能获得较好的性能。

四、 讨论:研究结果的意义与启示

本研究提出的 CancerGPT 模型,为罕见癌症药物对协同作用预测提供了一种有效的解决方案。更重要的是,本研究为深入理解 LLMs 在生物医学领域的应用提供了重要的 insights:

  1. 归纳推理与演绎推理的结合: 本研究成功地将基于数据的归纳推理(少样本微调)与基于知识的演绎推理(LLMs 预训练知识)相结合,为解决数据稀缺问题提供了新的范式。

  2. LLMs 作为通用学习器的潜力: 实验结果表明,经过适当微调的 LLMs 能够展现出强大的迁移学习能力,有望成为生物医学领域通用的智能学习模型。

  3. 轻量级迁移学习的可行性: 仅对 LLMs 的最后一层进行微调即可取得与全模型微调相当的性能,这为高效利用预训练 LLMs 解决下游任务提供了新的途径。

五、 未来的研究方向与挑战

尽管本研究取得了积极的成果,但仍存在一些局限性和未来值得探索的方向:

  1. 模型泛化能力验证: 需要在更多类型的生物医学预测任务上,进一步验证 LLMs 的泛化能力。

  2. 多模态数据融合: 如何将 LLMs 提取的文本信息与基因组、化学特征等结构化数据进行有效融合,是一个重要的研究方向。

  3. 模型可解释性提升: 虽然本研究尝试对 LLMs 的推理进行解释,但如何提高 LLMs 的可解释性,避免“黑箱”问题,仍然是一个重要的挑战。

本研究提出的 CancerGPT 模型,为解决罕见癌症药物对协同作用预测难题提供了新的思路和有效工具,并为 LLMs 在生物医学领域的应用提供了重要的理论和实践依据。未来,随着 LLMs 技术的不断发展,其在生物医学领域的应用前景将更加广阔。

往期内容荐读:

数智药学的崛起:人工智能赋能药学新未来

数智药师:AI时代药学服务的引领者

智能决策助力药物安全:大模型在临床处方审核中的突破

数字人技术在药学服务中的应用

药师必备:掌握AI,引领药学服务新时代

LEADER - 大模型蒸馏的药物推荐模型

李新刚:《医院药学的创新引擎:ChatGPT的应用与思考》

ChatGPT 在临床药学中的有效性以及人工智能在药物治疗管理中的作用

评估大语言模型在药物基因组学问答任务中的表现:PGxQA

DDI-GPT:使用知识图谱增强的大模型对药物相互作用进行可解释的预测

生成式AI:药学科普的新引擎

诺奖得主David Baker最新Science论文:药学+AI领域迎来新机遇!

AI与药学:ChatGPT与临床培训——药学博士(Pharm-D)学生的看法、担忧和实践

人工智能大模型在用药处方审核的应用潜力:一项跨 12 个临床专科的前瞻性研究

生成式人工智能在中医药学教育中的应用与挑战

PharmacyGPT: AI赋能精准ICU药物治疗

数智药学:信息药师向AI药师的进化

AI用于研究药物扩大适应症:大模型架起药物分子结构与适应症的桥梁

AI与药学:DrugGPT助力减少英国每年2.37亿次用药错误

AI时代下的家庭药师

AI与药学:用药咨询场景的检索增强AI大模型

​AI与药学:生成式人工智能如何帮助构建患者药品说明书?

欢迎关注“赛文AI药学”!

赛文AI药学,致力于探索人工智能在药学场景中的创新与应用。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2274944.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

20250109使用M6000显卡在Ubuntu20.04.6下跑whisper来识别中英文字幕

20250109使用M6000显卡在Ubuntu20.04.6下跑whisper来识别中英文字幕 2025/1/9 20:57 https://blog.csdn.net/wb4916/article/details/144541848 20241217使用M6000显卡在WIN10下跑whisper来识别中英文字幕 步骤: 1、在NVIDIA的官网下载并安装M6000显卡在WIN10下的最…

Windows service运行Django项目

系统:Windows Service 软件:nssm,nginx 配置Django项目 1、把Django项目的静态文件整理到staticfiles文件夹中 注:settings中的设置 STATIC_URL /static/ STATIC_ROOT os.path.join(BASE_DIR, staticfiles/) STATICFILES_DI…

关于物联网的基础知识(二)——物联网体系结构分层

成长路上不孤单😊😊😊😊😊😊 【14后😊///计算机爱好者😊///持续分享所学😊///如有需要欢迎收藏转发///😊】 今日分享关于物联网的基础知识(二&a…

【C++】22.AVL树实现

文章目录 1. AVL的概念AVL树的逻辑理解四种形式1. LL型(左孩子的左子树上出现节点使结点失衡)2. RR型(右孩子的右子树上出现节点使结点失衡)3. LR型(左孩子的右子树上出现节点使结点失衡)4. RL型&#xff0…

php文件包含漏洞

基本 相关函数 php中引发文件包含漏洞的通常是以下四个函数: include()include_once()require()require_once() reuqire() 如果在包含的过程中有错,比如文件不存在等,则会直接退出,不执行后续语句。 include() 如果出错的话&a…

ELK实战(最详细)

一、什么是ELK ELK是三个产品的简称:ElasticSearch(简称ES) 、Logstash 、Kibana 。其中: ElasticSearch:是一个开源分布式搜索引擎Logstash :是一个数据收集引擎,支持日志搜集、分析、过滤,支持大量数据…

预训练语言模型——BERT

1.预训练思想 有了预训练就相当于模型在培养大学生做任务,不然模型初始化再做任务就像培养小学生 当前数据层面的瓶颈是能用于预训练的语料快被用完了 现在有一个重要方向是让机器自己来生成数据并做微调 1.1 预训练(Pre - training)vs. 传…

ElasticSearch 认识和安装ES

文章目录 一、为什么学ElasticSearch?1.ElasticSearch 简介2.ElasticSearch 与传统数据库的对比3.ElasticSearch 应用场景4.ElasticSearch 技术特点5.ElasticSearch 市场表现6.ElasticSearch 的发展 二、认识和安装ES1.认识 Elasticsearch(简称 ES)2.El…

mysql和redis的最大连接数

平时我们要评估mysql和redis的最大连接数,可以选择好环境(比如4核8G),定好压测方法(没有索引的mysql单表,redis单key)进行压测,评估其最大并发量。 也可以查看各大云厂商的规格进行评估。 mys…

2025年中科院分区大类划分公布!新增8155本

2025年中科院分区表变更情况 扩大收录范围 2025年的期刊分区表在原有的自然科学(SCIE)、社会科学(SSCI)和人文科学(AHCI)的基础上,增加了ESCI期刊的收录,并根据这些期刊的数据进行…

机器人避障不再“智障”:HEIGHT——拥挤复杂环境下机器人导航的新架构

导读: 由于环境中静态障碍物和动态障碍物的约束,机器人在密集且交互复杂的人群中导航,往往面临碰撞与延迟等安全与效率问题。举个简单的例子,商城和车站中的送餐机器人往往在人流量较大时就会停在原地无法运作,因为它不…

Spring Boot教程之五十二:CrudRepository 和 JpaRepository 之间的区别

Spring Boot – CrudRepository 和 JpaRepository 之间的区别 Spring Boot建立在 Spring 之上,包含 Spring 的所有功能。由于其快速的生产就绪环境,使开发人员能够直接专注于逻辑,而不必费力配置和设置,因此如今它正成为开发人员…

加速物联网HMI革命,基于TouchGFX的高效GUI显示方案

TouchGFX 是一款针对 STM32 微控制器优化的先进免费图形软件框架。 TouchGFX 利用 STM32 图形功能和架构,通过创建令人惊叹的类似智能手机的图形用户界面,加速了物联网 HMI 革命。 TouchGFX 框架包括 TouchGFX Designer (TouchGFXDesigner)(…

Java-数据结构-栈与队列(StackQueue)

一、栈(Stack) ① 栈的概念 栈是一种特殊的线性表,它只允许固定一端进行"插入元素"和"删除元素"的操作,这固定的一端被称作"栈顶",对应的另一端就被称做"栈底"。 📚 栈中的元素遵循后…

案例研究:UML用例图中的结账系统

在软件工程和系统分析中,统一建模语言(UML)用例图是一种强有力的工具,用于描述系统与其用户之间的交互。本文将通过一个具体的案例研究,详细解释UML用例图的关键概念,并说明其在设计结账系统中的应用。 用…

【动态规划篇】欣赏概率论与镜像法融合下,别出心裁探索解答括号序列问题

本篇鸡汤:没有人能替你承受痛苦,也没有人能拿走你的坚强. 欢迎拜访:羑悻的小杀马特.-CSDN博客 本篇主题:带你解答洛谷的括号序列问题(绝对巧解) 制作日期:2025.01.10 隶属专栏:C/C题…

点击底部的 tabBar 属于 wx.switchTab 跳转方式,目标页面的 onLoad 不会触发(除非是第一次加载)

文章目录 1. tabBar 的跳转方式2. tabBar 跳转的特点3. 你的配置分析4. 生命周期触发情况5. 总结 很多人不明白什么是第一次加载,两种情况讨论,第一种情况假设我是开发者,第一次加载就是指点击微信开发者工具上边的编译按钮,每点击…

CUDA、CUDNN以及tensorRT的版本对应关系

各版本的对应除了可以看文件的命名上还可以查看TensorRT的Release日志: Release Notes :: NVIDIA Deep Learning TensorRT Documentation 这个是官方测试TensorRT的Release日志,里面指明了当前测试的TensorRT版本是在哪个CUDNN等库下的测试结果&#x…

设计模式(观察者模式)

设计模式(观察者模式) 第三章 设计模式之观察者模式 观察者模式介绍 观察者模式(Observer Design Pattern) 也被称为发布订阅模式 。模式定义:在对象之间定义一个一对多的依赖,当一个对象状态改变的时候…

Helm部署activemq

1.helm create activemq 创建helm文件目录 2.修改values.yaml 修改image和port 3. helm template activemq 渲染并输出 4. helm install activemq activemq/ -n chemical-park // 安装 5.启动成功