文章目录
- 前言
- 一、导入库
- 二、数据处理
- 三、构建模型
- 四、迭代训练
- 五、模型评估
- 总结
前言
使用Pytorch进行MNIST分类,使用TensorDataset与DataLoader封装、加载本地数据集。
一、导入库
import numpy as np
import torch
from torch import nn, optim
from torch.utils.data import TensorDataset, DataLoader # 数据集工具
from load_mnist import load_mnist # 本地数据集
二、数据处理
1、导入本地数据集,将标签值设置为int类型,构建张量
2、使用TensorDataset与DataLoader封装训练集与测试集
# 构建数据
x_train, y_train, x_test, y_test = \
load_mnist(normalize=True, flatten=False, one_hot_label=False)
# 数据处理
x_train = torch.from_numpy(x_train.astype(np.float32))
y_train = torch.from_numpy(y_train.astype(np.int64))
x_test = torch.from_numpy(x_test.astype(np.float32))
y_test = torch.from_numpy(y_test.astype(np.int64))
# 数据集封装
train_dataset = TensorDataset(x_train, y_train)
test_dataset = TensorDataset(x_test, y_test)
batch_size = 64
train_loader = DataLoader(dataset=train_dataset,
batch_size=batch_size,
shuffle=True)
test_loader = DataLoader(dataset=test_dataset,
batch_size=batch_size,
shuffle=True)
三、构建模型
输入到全连接层之前需要把(batch_size,28,28)展平为(batch_size,784)
交叉熵损失函数整合了Softmax,在模型中可以不添加Softmax
# 继承模型
class FC(nn.Module):
def __init__(self):
super().__init__()
self.fc1 = nn.Linear(784, 10)
self.softmax = nn.Softmax(dim=1)
def forward(self, x):
y = self.fc1(x.view(x.shape[0],-1))
y = self.softmax(y)
return y
# 定义模型
model = FC()
loss_function = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.1)
四、迭代训练
从DataLoader中取出x和y,进行前向和反向的计算
for epoch in range(10):
print('Epoch:', epoch)
for i,data in enumerate(train_loader):
x, y = data
y_pred = model.forward(x)
loss = loss_function(y_pred, y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
五、模型评估
在测试集中进行验证
使用.item()获得tensor的取值
correct = 0
for i,data in enumerate(test_loader):
x, y = data
y_pred = model.forward(x)
_, y_pred = torch.max(y_pred, 1)
correct += (y_pred == y).sum().item()
acc = correct / len(test_dataset)
print('Accuracy:{:.2%}'.format(acc))
总结
记录了TensorDataset与DataLoader的使用方法,模型的构建与训练和上一篇Pytorch笔记之回归相似。