数据结构:二叉树(超详解析)

news2024/11/17 3:46:54

目录​​​​​​​

1.树概念及结构

1.1树的概念

1.2树的相关概念

1.3树的表示

1.3.1孩子兄弟表示法: 

 1.3.2双亲表示法:只存储双亲的下标或指针

两节点不在同一树上:

2.二叉树概念及结构

2.1.概念

2.2.特殊的二叉树:

2.2.1.满二叉树:

​编辑2.2.2. 完全二叉树:h = (log2(N+1))

2.3.二叉树的性质

2.4.二叉树的存储结构

2.4.1. 顺序存储:

2.4.2.链式存储:

3.二叉树的顺序结构及实现

3.1.二叉树的顺序结构

3.2.堆的概念及结构

3.3堆的实现

3.4.堆排序

3.5.TOP--K问题

4.二叉树的链式结构及实现

4.1.前序、中序以及后序遍历

4.2层序遍历

 以上就是个人学习线性表的个人见解和学习的解析,欢迎各位大佬在评论区探讨!

感谢大佬们的一键三连! 感谢大佬们的一键三连! 感谢大佬们的一键三连! 


1.树概念及结构

1.1树的概念

        树是一种非线性的数据结构,它是由n(n>=0)个有限结点组成一个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树,也就是说它是根朝上,而叶朝下的。

1.1.1.有一个特殊的结点,称为根结点,根节点没有前驱结点;
1.1.2.除根节点外,其余结点被分成M(M>0)个互不相交的集合T1、T2、……、Tm,其中每一个集合Ti(1<= i<= m)又是一棵结构与树类似的子树。每棵子树的根结点有且只有一个前驱,可以有0个或多个后继 ;

1.1.3.因此,树是递归定义的。
注意:树形结构中,子树之间不能有交集,否则就不是树形结构。

1.2树的相关概念

        

重点重点重点:

1.2.1.节点的度:一个节点含有的子树的个数称为该节点的度; 如上图:A的为6。。
1.2.2.叶节点或终端节点:度为0的节点称为叶节点; 如上图:B、C、H、I...等节点为叶节点。
1.2.3.非终端节点或分支节点:度不为0的节点; 如上图:D、E、F、G...等节点为分支节点。
1.2.4.双亲节点或父节点:若一个节点含有子节点,则这个节点称为其子节点的父节点; 如上图:A是B的父节点。

1.2.5.孩子节点或子节点:一个节点含有的子树的根节点称为该节点的子节点; 如上图:B是A的孩子节点。
1.2.6.兄弟节点:具有相同父节点的节点互称为兄弟节点; 如上图:B、C是兄弟节点。
1.2.7.树的度:一棵树中,最大的节点的度称为树的度; 如上图:树的度为6。
1.2.8.节点的层次:从根开始定义起,根为第1层,根的子节点为第2层,以此类推。
1.2.9.树的高度或深度:树中节点的最大层次; 如上图:树的高度为4。
1.2.10.堂兄弟节点:双亲在同一层的节点互为堂兄弟;如上图:H、I互为兄弟节点。
1.2.11.节点的祖先:从根到该节点所经分支上的所有节点;如上图:A是所有节点的祖先。
1.2.12.子孙:以某节点为根的子树中任一节点都称为该节点的子孙。如上图:所有节点都是A的子孙。
1.2.13.森林:由m(m>0)棵互不相交的树的集合称为森林。

1.3树的表示

既要保存值域,也要保存结点和结点之间的关系。

实际中树有很多种表示方式如:双亲表示法,孩子表示法、孩子双亲表示法以及孩子兄弟表示法等。

1.3.1孩子兄弟表示法: 

typedef int DataType;
struct Node
{
        struct Node* _firstChild1; // 第一个孩子结点
        struct Node* _pNextBrother; // 指向其下一个兄弟结点
        DataType _data; // 结点中的数据域
};

 1.3.2双亲表示法:只存储双亲的下标或指针

两节点不在同一树上:

2.二叉树概念及结构

2.1.概念

一棵二叉树是结点的一个有限集合,该集合:

        1. 或者为空 ;

        2. 由一个根节点加上两棵别称为左子树和右子树的二叉树组成 。

注意:

        1. 二叉树不存在度大于2的结点
        2. 二叉树的子树有左右之分,次序不能颠倒,因此二叉树是有序树。

2.2.特殊的二叉树:

2.2.1.满二叉树:

        一个二叉树,如果每一个层的结点数都达到最大值,则这个二叉树就是满二叉树。也就是说,如果一个二叉树的层数为K,且结点总数是 2^k-1,则它就是满二叉树


2.2.2. 完全二叉树:h = (log2(N+1))

        完全二叉树是效率很高的数据结构,完全二叉树是由满二叉树而引出来的。对于深度为K的,有n个结点的二叉树,当且仅当其每一个结点都与深度为K的满二叉树中编号从1至n的结点一一对应时称之为完全二叉树。 要注意的是满二叉树是一种特殊的完全二叉树。

2.3.二叉树的性质

2.3.1. 若规定根节点的层数为1,则一棵非空二叉树的第i层上最多有2^(i-1)个结点;

2.3.2. 若规定根节点的层数为1,则深度为h的二叉树的最大结点数是2^h-1;

2.3.3. 对任何一棵二叉树, 如果度为n0其叶结点个数为 , 度为2的分支结点个数为n2 ,则有 n0=n2 +1;

2.3.4. 若规定根节点的层数为1,具有n个结点的满二叉树的深度,h=log(n+1). (ps:log2(n+1)是log以2 为底,n+1为对数);

2.3.5. 对于具有n个结点的完全二叉树,如果按照从上至下从左至右的数组顺序对所有节点从0开始编号,则对于序号为i的结点有:

        1. 若i>0,i位置节点的双亲序号:(i-1)/2;i=0,i为根节点编号,无双亲节点;

        2. 若2i+1<n,左孩子序号:2i+1,2i+1>=n否则无左孩子;

        3. 若2i+2<n,右孩子序号:2i+2,2i+2>=n否则无右孩子;

 1. 某二叉树共有 399 个结点,其中有 199 个度为 2 的结点,则该二叉树中的叶子结点数为( )
A .不存在这样的二叉树
B.200
C. 198
D. 199
2.在具有 2n 个结点的完全二叉树中,叶子结点个数为( )
A. n
B. n+1
C. n-1
D. n/2

解析:

        0个节点N0,1个节点N1,2个节点N2;2n = N0+N1+N2;2n = N0+N1+N0-1;所以2N0=2n。
3.一棵完全二叉树的节点数位为531个,那么这棵树的高度为( )
A. 11
B. 10
C. 8
D. 12
4.一个具有767个节点的完全二叉树,其叶子节点个数为()
A. 383
B. 384
C. 385
D. 386

解析:

        0个节点N0,1个节点N1,2个节点N2;767 = N0+N1+N0-1;2N0 = 768.

2.4.二叉树的存储结构

        二叉树一般可以使用两种结构存储,一种顺序结构,一种链式结构。

2.4.1. 顺序存储:

        顺序结构存储就是使用数组来存储,一般使用数组只适合表示完全二叉树,因为不是完全二叉树会有空间的浪费(当节点无子节点时,数组位置空缺)。而现实中使用中只有堆才会使用数组来存储。二叉树顺序存储结构在物理上是一个数组,在逻辑结构上是一颗二叉树。

2.4.2.链式存储:

        二叉树的链式存储结构是指,用链表来表示一棵二叉树,即用链来指示元素的逻辑关系。 通常的方法是链表中每个结点由三个域组成,数据域和左右指针域,左右指针分别用来给出该结点左孩子和右孩子所在的链结点的存储地址 。链式结构又分为二叉链和三叉链,当前我们学习中一般都是二叉链,学到高阶数据结构时如红黑树等会用到三叉链。

3.二叉树的顺序结构及实现

3.1.二叉树的顺序结构

        普通的二叉树是不适合用数组来存储的,因为可能会存在大量的空间浪费。而完全二叉树更适合使用顺序结构存储。现实中我们通常把堆(一种二叉树)使用顺序结构的数组来存储,需要注意的是这里的堆和操作系统虚拟进程地址空间中的堆是两回事,一个是数据结构,一个是操作系统中管理内存的一块区域分段。

3.2.堆的概念及结构

3.2.1.概念:

        如果有一个关键码的集合K = {k1,k2 ,k3,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:ki<=k2i+1 且ki<=k2i+2 (ki>=k2i+1且ki>=k2i+2) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。
3.2.2堆的性质:
        1.堆中某个节点的值总是不大于或不小于其父节点的值;
        2.堆总是一棵完全二叉树。

底层逻辑:

        1.物理结构——>数组;

        2.逻辑结构——>完全二叉树;

堆:非线性结构,是完全二叉树;

小堆:树中任意一个父亲都<=孩子;

大堆:树中任意一个父亲都>=孩子;

一般解决的问题:

        1.topk问题:找前多少个最大值或最小值;

        2.堆排序:(时间复杂度O(N*logN))    冒泡排序(O(N^2))

需要排序100W个元素,堆排序2000W次,冒泡排序1万亿次。

堆的规律:

        leftchild = parent*2+1;

        rightchild = parent*2+2;

        partent =  (child-1)/2;

总结:

        顺序存储不适合用数组存储;

        满二叉树和完全二叉树适合用数组存储。

3.3堆的实现

堆的头文件:

typedef int HPDataType;

typedef struct Heap
{
    HPDataType* a;
    int size;
    int capacity;
}HP;


//初始化
void HeapInit(HP* php);
void HeapInitArray(HP* php,int* a,int n);

//销毁
void HeapDestory(HP* php);

//插入
void HeapPush(HP* php, HPDataType x);

//弹出
void HeapPop(HP* php);

//打印
void HeapPrint(HP* php);

//堆顶
HPDataType HeapTop(HP* php);

//判断为空
bool HeapEmpty(HP* php);

//交换
void Swap(HPDataType* s1, HPDataType* s2);

//向上调整
void Adjustup(HPDataType* a, int child);

//向下调整
void Adjustdown(HPDataType* a, int n, int parent);

//初始化(为空)111方法一
void HeapInit(HP* php)
{
    assert(php);

    php->size = php->capacity = 0;
    php->a = NULL;
}

//初始化(不为空不需要再Push)222方法二
void HeapInitArray(HP* php, int* a, int n)
{
    assert(php);
    assert(a);

    php->a = (HPDataType*)malloc(sizeof(HPDataType) * n);
    if (php->a == NULL)
    {
        perror("malloc fail");
        exit(-1);
    }

    php->size = php->capacity = n;
    memcpy(php->a, a, n * sizeof(HPDataType));

    //建堆
    for (int i = 1; i < n; i++)
    {
        Adjustup(php->a, i);
    }
}

        向上调整:将儿子节点的下标传递给形参,找到父节点,子节点的值与父节点比较,如果子节点比父亲节点大那么进行交换(建大堆),依次循环判断,遍历结束则说明已经完成大堆的创建。

//交换
void Swap(HPDataType* s1, HPDataType* s2)
{
    HPDataType tmp = *s1;
    *s1 = *s2;
    *s2 = tmp;
}

//向上调整(此时建立大堆)
void Adjustup(HPDataType* a, int child)
{
    int parent = (child - 1) / 2;
    while (child > 0)
    {
        if (a[child] > a[parent])
        {
            Swap(&a[child], &a[parent]);
            child = parent;
            parent = (child - 1) / 2;
        }
        else
        {
            break;
        }
    }
}

        向下调整:将父亲节点的下标传递给形参,找到儿子点,子节点的值与父节点比较,如果子节点比父亲节点大那么进行交换(建小堆),依次循环判断,遍历结束则说明已经完成小堆的创建。

//交换
void Swap(HPDataType* s1, HPDataType* s2)
{
    HPDataType tmp = *s1;
    *s1 = *s2;
    *s2 = tmp;
}

//向下调整(此时建立小堆)
void Adjustdown(HPDataType* a, int n, int parent)
{
    int child = (parent * 2) + 1;
    while (child < n)
    {
        if (child + 1 < n && a[child] > a[child + 1])
        {
            child++;
        }
        if (a[parent] > a[child])
        {
            Swap(&a[child], &a[parent]);
            parent = child;
            child = (parent * 2) + 1;
        }
        else
        {
            break;
        }
    }

}

//插入
void HeapPush(HP* php, HPDataType x)
{
    assert(php);

    if (php->size == php->capacity)
    {
        int newcapacity = php->size == 0 ? 4 : 2 * php->size;
        HPDataType* tmp = (HPDataType*)realloc(php->a,sizeof(HPDataType) * newcapacity);
        if (tmp == NULL)
        {
            perror("realloc fail");
            exit(-1);
        }

        php->capacity = newcapacity;
        php->a = tmp;
    }

    php->a[php->size] = x;
    php->size++;

    Adjustup(php->a, php->size-1);
}

//弹出/删除
void HeapPop(HP* php)
{
    assert(php);
    assert(php->size > 0);

    Swap( &php->a[0], &php->a[php->size - 1]);
    --php->size;

    Adjustdown(php->a, php->size, 0);
}

//打印
void HeapPrint(HP* php)
{
    assert(php);

    for(int i = 0;i < php->size;i++)
    {
        printf("%d ",php->a[i]);
    }
    printf("\n");
}

//销毁
void HeapDestory(HP* php)
{
    assert(php);

    free(php->a);
    php->a = NULL;
    php->size = php->capacity = 0;
}

//堆顶
HPDataType HeapTop(HP* php)
{
    assert(php);
    assert(php->size > 0);

    return php->a[0];
}

//判断为空
bool HeapEmpty(HP* php)
{
    assert(php);

    return php->size == 0;
}

3.4.堆排序

升序建大堆;将最大值和最后一个值交换,然后size-1,一直到size为1时,完成升序排序

降序建小堆;将最小值和最后一个值交换,然后size-1,一直到size为1时,完成降序排序

3.5.TOP--K问题

即求数据结合中前K个最大的元素或者最小的元素,一般情况下数据量都比较大。

1. 用数据集合中前K个元素来建堆
        前k个最大的元素,则建小堆;
        前k个最小的元素,则建大堆;
2. 用剩余的N-K个元素依次与堆顶元素来比较,不满足则替换堆顶元素

        将剩余N-K个元素依次与堆顶元素比完之后,堆中剩余的K个元素就是所求的前K个最小或者最大的元素。

4.二叉树的链式结构及实现

4.1.前序、中序以及后序遍历

二叉树的遍历有:前序/中序/后序的递归结构遍历:
1. 前序遍历(Preorder Traversal 亦称先序遍历)——访问根结点的操作发生在遍历其左右子树之前。(根,左,右)
2. 中序遍历(Inorder Traversal)——访问根结点的操作发生在遍历其左右子树之中(间)。(左,根,右)
3. 后序遍历(Postorder Traversal)——访问根结点的操作发生在遍历其左右子树之后。
由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为先根遍历、中根遍历和后根遍历。(左,右,根)

//前序
void FrontOrder(BTNode* root)
{
    if (root == NULL)
    {
        printf("NULL ");
        return;
    }

    printf("%d ", root->val);
    FrontOrder(root->left);
    FrontOrder(root->right);
}

//中序
void InOrder(BTNode* root)
{
    if (root == NULL)
    {
        printf("NULL ");
        return;
    }

    InOrder(root->left);
    printf("%d ", root->val);
    InOrder(root->right);
}

//后序
void PostOrder(BTNode* root)
{
    if (root == NULL)
    {
        printf("NULL ");
        return;
    }

    PostOrder(root->left);
    PostOrder(root->right);
    printf("%d ", root->val);
}

 

4.2层序遍历

        设二叉树的根节点所在层数为1,层序遍历就是从所在二叉树的根节点出发,首先访问第一层的树根节点,然后从左到右访问第2层上的节点,接着是第三层的节点,以此类推,自上而下,自左至右逐层访问树的结点的过程就是层序遍历。

//结构体
typedef struct BinaryTreeNode
{
    struct BinaryTreeNode* left;
    struct BinaryTreeNode* right;
    int val;
}BTNode;

//节点个数
int TreeSize(BTNode* root)
{
    if (root == NULL)
        return 0;
    return TreeSize(root->left) + TreeSize(root->right) + 1;
}

//叶子节点的个数
int TreeLeafSize(BTNode* root)
{
    if (root == NULL)
        return 0;
    
    if (root->left == NULL && root->right == NULL)
    {
        return 1;
    }
    return TreeLeafSize(root->left) + TreeLeafSize(root->right);
}

//第k层的节点数
int TreeKlevel(BTNode* root, int k)
{
    assert(k > 0);

    if (root == NULL)
    {
        return 0;
    }

    if (k == 1)
    {
        return 1;
    }

    return TreeKlevel(root->left, k - 1) + TreeKlevel(root->right, k - 1);
}

//查找值为x的节点
BTNode* FindTree(BTNode* root, int x)
{
    if (root == NULL)
        return NULL;

    if (root->val == x)
    {
        return root;
    }

    BTNode* ret = NULL;
    ret = FindTree(root->left, x);
    if (ret != NULL)
    {
        return ret;
    }
    ret = FindTree(root->right, x);
    return ret;
}

//层序遍历
void LevelOrder(BTNode* root)
{
    Que q;
    QueueInit(&q);

    if (root)
    {
        QueuePush(&q, root);
    }

    while (!QueueEmpty(&q))
    {
        BTNode* front = QueueFront(&q);
        printf("%d ", front->val);
        if(front->left != NULL)
            QueuePush(&q, front->left);
        if(front->right != NULL)
            QueuePush(&q, front->right);

        QueuePop(&q);
    }
    printf("\n");
}

//判断是否是完全二叉树
int TreeComplete(BTNode* root)
{
    Que q;
    QueueInit(&q);

    if (root)
    {
        QueuePush(&q, root);
    }

    while (!QueueEmpty(&q))
    {
        BTNode* front = QueueFront(&q);
        if (front == NULL)
        {
            break;
        }
        QueuePush(&q, front->left);
        QueuePush(&q, front->right);

        QueuePop(&q);
    }
    
    //当在队列中遇到NULL时,判断后面是否有非空节点,有则不是完全二叉树
    while (!QueueEmpty(&q))
    {
        BTNode* front = QueueFront(&q);
        QueuePop(&q);
        if (front != NULL)
        {
            QueueDestroy(&q);
            return false;
        }
    }
    QueueDestroy(&q);
    return true;
}

//销毁
void DestroyTree(BTNode* root)
{
    if (root == NULL)
    {
        return;
    }

    DestroyTree(root->left);
    DestroyTree(root->right);

    free(root);
}

 以上就是个人学习线性表的个人见解和学习的解析,欢迎各位大佬在评论区探讨!

感谢大佬们的一键三连! 感谢大佬们的一键三连! 感谢大佬们的一键三连! 

                                             

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1063425.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

掌握交易时机!

“您是否知道您选择购买和出售加密货币的时间会产生很大的影响&#xff1f;当然&#xff0c;大多数交易者都知道高价卖出和低价买入的基本知识。然而&#xff0c;在选择交易加密货币的最佳时机时&#xff0c;还需要考虑许多其他小细节。加密货币市场分析表明&#xff0c;一天中…

【MyBatis-Plus】快速精通Mybatis-plus框架—核心功能

刚才的案例中都是以id为条件的简单CRUD&#xff0c;一些复杂条件的SQL语句就要用到一些更高级的功能了。 1.条件构造器 除了新增以外&#xff0c;修改、删除、查询的SQL语句都需要指定where条件。因此BaseMapper中提供的相关方法除了以id作为where条件以外&#xff0c;还支持…

ES 关于 remote_cluster 的一记小坑

最近有小伙伴找到我们说 Kibana 上添加不了 Remote Cluster&#xff0c;填完信息点 Save 直接跳回原界面了。具体页面&#xff0c;就和没添加前一样。 我们和小伙伴虽然隔着网线但还是进行了深入、详细的交流&#xff0c;梳理出来了如下信息&#xff1a; 两个集群&#xff1a;…

Java常见API---split()

package daysreplace;public class SplitTest {public static void main(String[] args) {String str"武汉市|孝感市|长沙市|北京市|上海市";String[] array str.split("\\|");System.out.println(array[0]);System.out.println(array[1]);System.out.pri…

[黑马程序员TypeScript笔记]------一篇就够了

目录&#xff1a; TypeScript 介绍 TypeScript 是什么&#xff1f;TypeScript 为什么要为 JS 添加类型支持&#xff1f;TypeScript 相比 JS 的优势TypeScript 初体验 安装编译 TS 的工具包 编译并运行 TS 代码 简化运行 TS 的步骤 TypeScript 常用类型 概述类型注解常用基础…

​“债务飙升!美国一天内增加2750亿美元,金融震荡的前奏已拉开帷幕!”

2023年10月4日&#xff0c;美国政府向美国债务追加2750亿美元&#xff0c;相当于现在比特币&#xff08;BTC&#xff09;总市值的一半还多。 有人会说:多一点、少一点&#xff0c;没什么区别.....确实&#xff0c;当你看美国债务时&#xff0c;2750亿美元并没有什么意义&#x…

oringin的x轴(按x轴规定值)绘制不规律的横坐标

1.双击x轴 2.选择刻度线标签 3.选择刻度

【数据结构】排序算法(二)—>冒泡排序、快速排序、归并排序、计数排序

&#x1f440;樊梓慕&#xff1a;个人主页 &#x1f3a5;个人专栏&#xff1a;《C语言》《数据结构》《蓝桥杯试题》《LeetCode刷题笔记》《实训项目》 &#x1f31d;每一个不曾起舞的日子&#xff0c;都是对生命的辜负 目录 前言 1.冒泡排序 2.快速排序 2.1Hoare版 2.2占…

二叉树的初步认识

二叉树是这么一种树状结构&#xff1a;每个节点最多有两个孩子&#xff0c;左孩子和右孩子 重要的二叉树结构 完全二叉树&#xff08;complete binary tree&#xff09;是一种二叉树结构&#xff0c;除最后一层以外&#xff0c;每一层都必须填满&#xff0c;填充时要遵从先左后…

YOLOv5报错:TypeError: load() missing 1 required positional argument: ‘Loader‘

报错信息 报错位置 解决办法 将 self.update(yaml.load(fo.read())) 改为&#xff1a; self.update(yaml.safe_load(fo.read()))

信息学 学习/复习 抽签器(附源码)

问你一个问题&#xff0c;你考试前怎么复习呀&#xff1f; 效果图 以下是源代码&#xff0c;可自行修改 [C] #include<bits/stdc.h> #include<windows.h> using namespace std; vector<string>item; int main(void) {item.push_back("Manacher"…

谁“动”了我的信息?

通信公司“内鬼” 批量提供手机卡 超6万张手机卡用来发涉赌短信 2023年10月2日&#xff0c;据报道2022年12月&#xff0c;湖北省公安厅“雷火”打击整治治安突出问题专项行动指挥部研判发现&#xff0c;有人在湖北随州利用虚拟拨号设备GOIP发出大量赌博短信。随州市公安局研判…

第一课数组、链表、栈、队列

第一课数组、链表、栈、队列 acwing136 邻值查找---中等题目描述代码展示 lc20.有效的括号--简单题目描述代码展示 lc25.K 个一组翻转链表--困难题目描述代码展示 lc26.删除有序数组中的重复项--简单题目描述代码展示 lc88.合并两个有序数组--简单题目描述代码展示 lc141.环形链…

Flink--9、双流联结(窗口联结、间隔联结)

星光下的赶路人star的个人主页 我还有改变的可能性&#xff0c;一想起这点&#xff0c;我就心潮澎湃 文章目录 1、基于时间的合流——双流联结&#xff08;Join&#xff09;1.1 窗口联结&#xff08;Window Join&#xff09;1.2 间隔联结&#xff08;Interval Join&#xff09;…

【数据恢复篇】浅谈FTK Imager数据恢复功能

【数据恢复篇】浅谈FTK Imager数据恢复功能 日常取证工作中&#xff0c;常用FTK Imager制作磁盘镜像、挂载镜像等&#xff0c;但FTK Imager的数据恢复功能也是非常强大的&#xff0c;某些数据的恢复效果不输专业的数据恢复软件&#xff0c;甚至略胜一筹—【蘇小沐】 文章目录 …

项目设计:YOLOv5目标检测+机构光相机(intel d455和d435i)测距

1.介绍 1.1 Intel D455 Intel D455 是一款基于结构光&#xff08;Structured Light&#xff09;技术的深度相机。 与ToF相机不同&#xff0c;结构光相机使用另一种方法来获取物体的深度信息。它通过投射可视光谱中的红外结构光图案&#xff0c;然后从被拍摄物体表面反射回来…

【C++】:类和对象(2)

朋友们、伙计们&#xff0c;我们又见面了&#xff0c;本期来给大家解读一下有关Linux的基础知识点&#xff0c;如果看完之后对你有一定的启发&#xff0c;那么请留下你的三连&#xff0c;祝大家心想事成&#xff01; C 语 言 专 栏&#xff1a;C语言&#xff1a;从入门到精通 数…

投资理财:利率下行时代应该怎样存钱?

大家好&#xff0c;我是财富智星&#xff0c;今天跟大家分享一下当下利率下行的时代&#xff0c;钱应该怎样存&#xff0c;存哪里的问题。 一、 银行利率下行 在过去的三十年里&#xff0c;您已经逐渐适应了不断下降的利率&#xff0c;从10%到现在的1.65%。而在未来&#xff0c…

vue3 中使用echarts图表——柱状图

柱状图是比较常用的图形结构&#xff0c;所以我先收集一些精美的柱状图 一、柱状图&#xff1a;设置圆角和颜色 <template><div class"box" ref"chartDom"></div> </template> <script setup> import { ref, onMounted } fr…

C中volatile总结

在CPU处理过程中&#xff0c;需要将内存中的数据载入到寄存器中才能计算&#xff0c;所以可能涉及到一个问题&#xff0c;如果内存中的数据被更改了&#xff0c;但是寄存器还是使用的旧数据&#xff0c;这样就会造成数据的不同步。 一、volatile关键字的作用 使用volatile关键…