分布式系统(事务处理)

news2025/1/19 20:19:12

文章目录

  • 事务(Transaction)
  • 分布式事务
  • 原子提交协议
    • 单阶段提交
    • 两阶段提交
    • 三阶段提交
  • 串行等价 / 并发控制
  • 分布式死锁
    • 锁超时
    • 全局等待图
    • 边追逐算法
  • 事务放弃时的恢复
  • 服务器崩溃后的恢复
    • 恢复文件
    • 重组恢复文件
    • 日志
    • 从Crash 中恢复
    • 2PC 的恢复

事务(Transaction)

特性:ACID

  • 原子性(Atomic):对于外部世界,事务不可分割
  • 一致性(Consistent):事务不违反系统不变量(system invariants)
  • 隔离性(Isolated):并发事务之间互不干扰
  • 持久性(Durable):一旦事务提交,其影响是永久的

事务的 API,

T = open Transaction{
        # 对象访问
        # 数据运算
        ...
        abort Transaction
        ...
	}close Transaction

事务的实现技术,

  • 串行等价 / 并发控制:两阶段锁、时间戳排序、乐观并发控制
  • 事务放弃后的恢复:严格两阶段锁

故障模型,

  • 磁盘故障:
    • 写操作失败、文件写错误、数据块损坏
    • 校验和原子写
  • 服务器故障:
    • 运行时崩溃、重启时崩溃
    • 进程替换
  • 通信故障:
    • 延迟、丢失、重复、损坏
    • 校验和可靠的 RPC 机制
  • 无拜占庭故障

分布式事务

访问由多个服务器管理的对象的事务被称为分布式事务。当一个分布式事务结束时,所有参与该事务的服务器必须全部提交,或全部放弃。有一个服务器扮演协调者,由它来保证在所有的服务器(参与者)上获得同一结果。协调者和参与者之间最常用的协议是两阶段提交协议(two-phase commit,2PC)。

有两种分布式事务:

  1. 平面事务(flat transaction):每个事务等一个请求结束后才发起下一个请求,顺序访问各个服务器上的对象。
  2. 嵌套事务(nested transaction):每个事务包含若干子事务,同一层次的事物可以并发执行;如果它们访问服务器上不同的对象,那么这些事务可以并行执行

在这里插入图片描述

协调者提供 Coordinator 接口,有三个基本操作

  • open Transaction,由客户调用,返回事务标识(TID)
  • close Transaction,由客户调用,
  • abort Transaction ,由协调者或参与者调用

Coordinator 接口提供一个额外的方法 join(TID, reference to participant),该方法在一个新的参与者参加到事务中的时候使用

  • 通知协调者,一个新的参与者已加入到事务 TID 中

  • 协调者将新的参与者记录到参与者列表中

在这里插入图片描述

当客户启动一个事务时,

  1. 客户向协调者发送 open Transaction 请求
  2. 协调者返回 TID 给客户
  3. 客户直接发送 request 给参与者,并携带上 TID
  4. 参与者收到请求,调用 join 方法通知协调者,参与到该事务中
  5. 每个参与者记录所有参与事务的可恢复对象(Recoverable objects)
  6. 事务结束后,协调者决定提交或者放弃事务

原子提交协议

事务的原子特性要求,分布式事务结束时,它的所有操作要么全部成功,要么全部取消。

  • 在一个分布式事务中,存在 客户 - 协调者 - 参与者 三方

  • 协调者、参与者之间仅有的通信是 join 请求

  • 客户请求了多个服务器上的操作,客户请求协调者提交事务,协调者启动提交协议

单阶段提交

由协调者告诉所有参与者是提交或放弃:

  1. 协调者不断地向所有参与者发送提交或放弃请求,
  2. 直到所有参与者确认已执行完相应操作。

存在问题:不允许任何服务器单方面放弃自己的事务,然而实际上每个服务器都可能会挂掉。

两阶段提交

两阶段提交协议(2PC:Two-Phrase Commit),它允许任何一个服务器自行放弃属于自己的事务。

故障模型:

  • 异步通信系统,消息可能丢失、损坏、重复
  • 服务器仅可能 crash,没有随机故障
  • 绕过 FLP 不可能:crash 的进程被替换,新进程从持久存储其他进程中获取故障前的信息

一些操作:

  1. can Commit (trans)?

    协调者询问参与者,能否提交事务。参与者回复 Yes / No

  2. do Commit (trans).

    协调者通知参与者,让其提交事务。参与者提交事务

  3. do Abort (trans).

    协调者通知参与者,让其放弃事务。参与者放弃事务

  4. have Committed (trans, participant).

    参与者通知协调者,自己完成了提交。

  5. get Decision (trans).

    当参与者投票 Yes 一段时间后,未收到 do Commit 或者 do Abort 指令。那么就主动询问协调者,事务最终的投票结果。

在这里插入图片描述

两阶段提交协议,

  • 投票阶段
    1. 协调者发送 can Commit 给所有参与者,询问它们是否可以提交(能否完成事务、是否完成事务)
    2. 参与者如果投票 Yes,那么进入 prepared 状态(要在持久存储中保存好事务的 update
    3. 参与者如果投票 No,那么立即放弃事务,并 rollback 到事务之前的状态(可恢复对象
  • 提交阶段
    1. 协调者收集所有的 votes,
      1. 如果全是 Yes,那么决定 commit,通知参与者提交事务
      2. 如果存在 No,或者出现故障,那么决定 abort,通知参与者放弃事务
    2. 投了 Yes 的参与者,等待协调者的决定(在持久存储中记录这个 decision)
      1. 如果是 do Commit,那么提交自己的事务,并向协调者发送 have Committed 确认完成提交
      2. 如果是 do Abort,那么就放弃事务,并 rollback 到事务之前的状态
      3. 如果等候超时,那么向协调者发送 get Decision,获取最终的决定

三种超时情况:

  1. 投票阶段,参与者完成事务之后,等待 can Commit 超时:单方面决定 abort 事务
  2. 提交阶段,协调者等待 votes 超时:发送 do Abort 给参与者
  3. 提交阶段,投票 Yes 的参与者处于“不确定”状态,如果等待 decision 超时:不断发送 get Decision 给协调者
  4. 由于可能出现任意多次的服务器或者通信故障,因此 2PC 仅保证最终完成,但没有时间限制(期间阻塞参与者,阻塞期间可能出现数据不一致)

2PC 需要 N N N 个 can Commit 消息, N N N 个 Yes / No 应答, N N N 个 do Commit 消息,一共 3 3 3 轮通信 3 N 3N 3N 个消息的开销(不包含 N N N 个 have Committed 以及若干 g e t D e c i s i o n get Decision getDecision 消息)

2PC 的优化

  • One RM:只有一个资源管理器,退化为单阶段提交,只需 3 3 3 轮通信(而非 4 4 4 轮)。
  • Read-Only Trans:只读事务,无论最终是提交还是放弃,都只需要释放对象的读锁。一旦收到 can Commit,就可以释放锁,然后就用 prepared-read-only 回应协调者,告诉协调者后续不必发送 do Commit 或者 do Abort 决定。
  • Presumed abort:推断事务一定会放弃,可以直接不写日志
  • Cooperative Termination Protocol:协调终止协议,减少等待。每个参与者不仅知道协调者地址,还知道其他参与者的地址。参与者会保留 decision 一段时间。

三阶段提交

三阶段提交协议(2PC:Two-Phrase Commit),通过引入 pre-commit 阶段,以及 timeout 策略,来减少整个集群的阻塞时间,提升系统性能。

第一阶段:can - commit

  • 协调者向各个参与者发送 can Commit,询问是否可以执行事务操作,并等待回复。

  • 各个参与者依据自身状况回复一个预估值(此时不执行事务,轻量级),

    1. 如果预估自己能够正常执行事务,那么就回应 Yes 投票,并进入 prepared 状态
    2. 否则,回应 No 投票,立即放弃事务

第二阶段:pre - commit

  • 协调者根据第一阶段的投票结果,采取相应操作:

    1. 所有的参与者都返回 Yes,发送 pre Commit 预备提交事务
    2. 一个或多个参与者返回 No,发送 do Abort 放弃事务
    3. 协调者等待超时,发送 do Abort 放弃事务
  • 投票 Yes 的参与者根据收到的指令,采取相应操作:

    1. 收到 pre Commit,那么就执行事务,
      1. 如果完成了事务,发送 Yes 给协调者(但不要提交事务),并进入 pre-committed 状态
      2. 如果执行事务失败,就发送 No 给协调者,放弃事务
    2. 收到 do Abort,那么放弃事务,rollback
    3. 如果超时,那么放弃事务,rollback

第三阶段:do - commit

  • 协调者根据第二阶段的参与者执行情况,采取相应操作:

    1. 所有的参与者都返回 Yes,发送 do Commit 提交事务
    2. 一个或多个参与者返回 No,发送 do Abort 放弃事务
    3. 协调者等待超时,发送 do Abort 放弃事务
  • 投票 Yes 的参与者根据收到的指令,采取相应操作:

    1. 收到 do Commit,那么提交事务
    2. 收到 do Abort,那么放弃事务,rollback
    3. 如果超时,那么默认提交事务(消除了无限期的阻塞,但这可能会导致数据不一致)

串行等价 / 并发控制

分布式系统的每个服务器上,都管理着很多的对象,它们负责保证并发事务访问这些对象时保持一致性。

  • 每个服务器负责对自己的对象应用并发控制机制
  • 分布式事务中所有服务器共同保证事务以串性等价方式执行
  • 可能的问题:
    • 更新丢失,两个事务同时读取了旧值( a ′ : = a + 1 , a ′ : = a + 2 a':=a+1,a':=a+2 a:=a+1,a:=a+2),导致其中一个事务的 update 被覆盖( a ′ ≠ a + 3 a' \neq a+3 a=a+3
    • 不一致检索,一个检索事务观察了多个正在更新的值( a ′ : = a − 1 , b ′ : = b + 1 a':=a-1,b':=b+1 a:=a1,b:=b+1),导致检索结果与实际不一致( a + b ≠ a ′ + b ′ a+b \neq a'+b' a+b=a+b

串行等价性

  1. 条件一:某个事务对于一个对象所有的访问,相对于其他事务的访问,是串行化的(一个事务中对同一对象的多次访问,都位于一个连续的临界区内)
  2. 条件二:两个事务所有的冲突操作对(读写冲突、写写冲突),必须以相同的次序执行访问(只要事务 T T T 的对于一个对象的冲突访问在事务 U U U 之前,那么对于其他对象的冲突访问都是同样的因果序)

串行等价的交错执行:并发事务交错执行各个操作,它的综合效果与按某种次序,一次只执行一个事务的效果一样(读操作返回相同的值;事务结束时,所有对象的实例变量也具有相同的值)。

  • 可以解决更新丢失的问题:

在这里插入图片描述

  • 可以解决不一致检索的问题:

在这里插入图片描述

通过加锁来实现并发控制,达到串行等价性:

  1. 加锁,串行化对象的访问(条件一)。事务把一个对象的所有访问,全都包含在同一个临界区内(一个对象只能加一次锁)
  2. 两阶段锁,确保冲突操作对的执行次序相同(条件二)。事务释放了任意一个锁之后,不允许申请任何新的锁(锁增长阶段、锁收缩阶段)
  3. 严格两阶段锁,防止脏数据读取过早写入问题。事务获取到的锁,必须在决定 commit 或者 abort 之后,才可以释放(减小粒度,降低影响范围)

分布式死锁

服务器上某个对象的锁,由本地锁管理器持有,

  • 每当有事务请求访问对象时,锁管理器就对这个对象尝试加锁。如果加锁失败,那么需要等待前一个事务解锁
  • 如果多个事务访问各个对象的加锁次序不同(事务 T T T 先访问 a a a 后访问 b b b,事务 U U U 先访问 b b b 后访问 a a a),这可能会导致事务之间的循环依赖,导致死锁
    • 单服务器死锁:要么避免死锁发生,要么检测(锁超时等待图)并解除死锁
    • 分布式死锁:多个服务器中的对象访问相互等待,在局部等待图中可能无法发现环路,必须构造出全局等待图

锁超时

思路:

  1. 每个锁都设定时间期限。一旦超时,那么锁就变成可剥夺的
  2. 如果没有事务在等待此对象,那么原本的事务依旧锁住这个对象
  3. 如果有其他事务正在等待这个对象,那么这个对象被解锁后交给等待事务,而被剥夺的事务将被放弃

问题:

  • 没有死锁的系统,事务依旧可能因为锁超时被剥夺,从而被放弃
  • 当系统过载时,长时间运行的事务将被经常性放弃
  • 恰当的超时时间长度难以确定

全局等待图

对于服务器 X , Y , Z X,Y,Z X,Y,Z 上的对象 A ; B ; C , D A;B;C,D A;B;C,D,交错执行的事务 U , V , W U,V,W U,V,W 有如下等待关系:

在这里插入图片描述

对应的全局等待图为:

在这里插入图片描述

为了找到全局环,需要服务器之间进行通信。

  • 集中式的死锁检测:
    1. 一个服务器担任全局死锁检测器,收集、合并各个服务器上的局部等待图
    2. 其他服务器不定期地发送局部等待图给死锁检测器
    3. 死锁检测器一旦在全局等待图中发现死锁环,那么就决定放弃某一个事务,通知其他服务器
    4. 问题:
      • 可用性差、缺乏容错、无伸缩性
      • 假死锁:收集到的局部等待图是老旧的,全局等待图中有环,但是有些事务已经放弃了某些锁,实际上不存在死锁
  • 分布式的死锁检测:可伸缩、可容错

边追逐算法

不需要构造全局等待图,而是在服务器之间转发 probe(探询)消息,

  1. 事务的协调者,记录这个事务是活动的还是在等待某个对象
  2. 事务的参与者的本地锁服务器,通知协调者这个事务开始或停止等待
  3. 当某个事务被放弃时,它的协调者通知所有参与者放弃事务,并释放相关的锁
  4. 发送规则:当事务依赖关系为 T 1 → T 2 T_1 \to T_2 T1T2,并且 T 2 T_2 T2 一直在等待其他事务,那么服务器发送 probe 消息

在这里插入图片描述

边追逐算法,

  • 算法启动:
    1. 当服务器 A A A 发现事务 T T T 等待事务 U U U,并且被阻塞的 U U U 在等待服务器 B B B 上的对象,那么 A A A 发送一个形如 ( T → U ) (T \to U) (TU) 的探询消息给 B B B,启动一次死锁检查
    2. 实际上,服务器发送 probe 给协调者,由协调者转发 probe 给下一个服务器,共需要 2 2 2 个消息
    3. 如果事务 U U U 和其他事务 V V V 共享锁,那么将探询消息转发给这些锁的拥有者
  • 死锁检测:
    1. 当服务器 B B B 收到了 ( T → U ) (T \to U) (TU) 消息,检查事务 U U U 是否在等待其他事务
    2. 如果 U → V U \to V UV,那么它就增加新边,把形如 ( T → U → V ) (T \to U \to V) (TUV) 的探询消息,继续发送到 V V V 等待的服务器 C C C
    3. 每当服务器在 probe 上增加一条新边,检查是否存在环路(对于 N N N 个事务组成的环路,需要 2 ( N − 1 ) 2(N-1) 2(N1) 个消息)
  • 死锁解除:
    1. 当检测到环路,其中的某个事务将被放弃(可能多个服务器同时发现同一个死锁环)
    2. 设定事务的优先级,将环路中的最低优先级的事务放弃(避免同时放弃多个事务)
    3. 向下传递:让 probe 消息只能从高优先级的事务传递到低优先级的事务上(减少通信量)

事务放弃时的恢复

如果事务取消,那么服务器必须保证其他并发事务无法看到被取消事务的影响

  1. 脏数据读取(dirty read):一个被放弃的事务对某个对象先执行了写操作,之后另一个被提交的事务对这个对象执行了读操作。

在这里插入图片描述

如图,事务 U U U 读取了事务 T T T 未提交的脏数据,这个脏数据会影响 U U U 的执行结果(比如发送 130 130 130 给客户),而已经提交的事务不能被取消(Undo)。

  1. 过早写入(premature writes):不同的事务对同一个对象执行写操作,其中一个写操作被放弃。

在这里插入图片描述

如图,两个事务 U , T U,T U,T 同时对于对象 a a a 执行写操作,当 U U U 被提交后 T T T 再被放弃,对象 a a a 将被恢复为最初的状态(前映像,before images),从而 U U U 提交的写操作丢失。

  • 事务的串行等价的交错执行
    • 对于同一对象的读写操作,就如同两个事务串行执行执行一样,但不要求提交或放弃
    • 只能保证两个事务都提交时的隔离特性
  • 事务的严格执行
    • 对于一个对象的读写操作,都必须推迟到对同一对象执行写操作的其他事务提交或者放弃之后
    • 可以真正保证事务的隔离特性

服务器崩溃后的恢复

恢复文件

恢复管理器(Recovery Manager, RM)

  1. 对已提交事务,将对象保存在持久存储中的恢复文件(日志、阴影版本)上
  2. 重新组织恢复文件,以提高恢复的性能
  3. 回收恢复文件中的存储空间
  4. 处理介质故障,需要在独立磁盘上对恢复文件做一个拷贝
  5. 服务器崩溃后,服务器上对象的恢复
  6. 2PC 的恢复

恢复文件的组织结构,

  • 对象:某个对象的数值
  • 事务状态
    • 事务标识 TID
    • 事务状态(prepared, committed, aborted)
    • 其他用于 2PC 的状态
  • 意图列表:TID 以及一系列的意图记录
    • 对象标识 UID
    • 对象在恢复文件中的位置

意图列表的作用,

  • 对应每个事务,都记录下它们修改的对象列表(值、引用)
  • 当某个事务提交时,Server 根据意图列表来确定受影响的对象,
    1. 将事务的临时对象版本,替换为对象的提交版本
    2. 把对象的新值,写入到服务器的恢复文件上
  • 当某个事务放弃时,Server 删除对应的所有临时对象版本
  • 在 2PC 中,一旦参与者进入 prepared 状态,那么它的 RM 必须把意图列表、对象的临时版本、事务状态都写入恢复文件

重组恢复文件

  1. 做检查点的过程,是将下列信息写到一个新的恢复文件
    • 当前服务器上所有已提交的对象版本
    • 事务的状态记录和尚未完全提交事务的意图列表
    • 还包括与 2PC 有关的信息
  2. 更换恢复文件的过程
    1. 在旧的恢复文件中增加一个标记
    2. 进行上述写动作到一个新的恢复文件,然后将那个标记以后的项,拷贝到这个新的恢复文件
    3. 用新的恢复文件替换旧的恢复文件
  3. 检查点的目的是,使得恢复更快和回收文件空间,要时不时做一下

日志

日志是恢复文件的一种具体形式,记录了服务器上执行的所有操作的历史

  • 最近检查点的快照 + 快照之后的事务操作历史
  • 操作历史:对象值、事务状态、意图列表
  • 日志中的次序,反映了各个事务进入 prepared / committed / aborted 状态的次序

每当事务准备好、提交、放弃时,Server 就调用自己的 RM,

  1. 当某事务 prepare,就让 RM 把意图列表中的对象,都 append 到日志中;同时,事务的 prepared 状态以及它的意图列表也被写入
  2. 当某事物 commit 或者 abort,就让 RM 把对应的 committed / aborted 状态写入日志
  3. 日志的写操作(append),
    • 假定是原子的:如果 crash,那么只有最后一次的 append 可能是不完整的
    • 把多次写缓冲起来,顺序写盘比随机写盘快得多

在这里插入图片描述

从Crash 中恢复

当服务器进程因崩溃而被替换后,新的进程执行:

  1. 首先将对象置为缺省的初始值,然后将控制转给恢复管理器
  2. RM 的任务是恢复所有对象的值(使这些值反映所有已提交事务的效果,不包含任何未完成或放弃事务的效果)
    1. 通过逆向读取日志文件来恢复对象值(如果从日志的开始进行恢复,通常要做更多的工作)
      • 使用具有 committed 状态的事务来恢复对象的值
      • 这个过程一直进行到所有的对象都被恢复
    2. 为了恢复已提交事务的更新,RM 从日志文件的意图列表中找对象的值
    3. 恢复过程必须是幂等的

2PC 的恢复

恢复管理器会用到两个事务状态:“完成” 和 “不确定”

  • 参与者用 “不确定” 状态,表示它的投票是 Yes,但尚未收到事务的提交决议
  • 协调者用 “已提交” 状态,来标记投票的结果是 Yes
  • 参与者用 “已提交” 状态,表示已通知投票结果
  • 协调者用 “完成” 状态,表示两阶段提交协议已经完成

此外,恢复文件还要增加两类信息

  1. 协调者:事务标识,参与者列表
  2. 参与组合:事务标识,协调者

在这里插入图片描述

参与者:

  1. 在投票 Yes 之前,必须进入 prepared 状态,在恢复文件中添加 “准备好” 状态
  2. 在投票 Yes 时,在恢复文件中添加 “参与者” 记录,并写入 “不确定” 状态
  3. 在投票 No 时,在恢复文件中写入 “已放弃” 状态

协调者:

  1. 第一阶段准备提交时,在恢复文件中添加 “协调者” 记录
  2. 第二阶段做出决定后,在恢复文件中添加 “已提交” 或者 “已放弃” 状态(一次性强制写入)
  3. 协调者收到所有的 ack 消息后,在恢复文件中写入 “完成” 状态

在恢复文件中最新的事务状态信息决定了故障时的事务状态,RM 需要根据 Server 是协调者或参与者以及状态的不同,进行事务恢复。如图所示:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/106157.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【Bio】基础生物学 - 化学键 chemical bond

文章目录化学键1. 共价键2. 离子键3. 金属键4. 非共价键5. 氢键Ref.化学键 化学键(chemical bond)是纯净物分子内或晶体内相邻两个或多个原子(或离子)间强烈的相互作用力的统称。使离子(ion)相结合或原子&…

【强化学习笔记】二.价值学习

文章目录Q&A1.DQN工作原理2.如何训练DQN2.1.如何更新模型参数3.2.1.完整走完流程,再更新模型参数。3.2.2.无需走完流程,即可更新模型参数。3.如何将TD算法应用到DQN网络Q&A 问:强化学习的目标是什么? 最大化累计奖励&am…

Windows 的 常用指令操作

目录 1、启动方式 2、修改cmd窗口背景色和字体色 3、文件夹常用指令 4、网络相关常用指令 5、其他常用命令 1、启动方式 用户启动:winR,输入cmd,Enter。 管理员启动:winR,输入cmd,CTRLShiftEnter。 …

Dubbo架构设计与源码解析(二) 服务注册

一、Dubbo简介 Dubbo是一款典型的高扩展、高性能、高可用的RPC微服务框架,用于解决微服务架构下的服务治理与通信问题。其核心模块包含【RPC通信】和【服务治理】,其中服务治理又分为服务注册与发现、服务容错、负载均衡、流量调度等。今天…

强化学习 —— DQN 代码遇到的问题总结

No module named ‘torch‘ 在把 DQN 代码复制到 PyCharm,点击“运行”后,出现了该报错。是因为当前环境中缺少 pytorch。解决方法: pip install torch如果因为网络问题安装特别慢,可从如下源进行下载: pip install…

php宝塔搭建部署实战开源版OneNav网址导航书签系统源码

大家好啊,我是测评君,欢迎来到web测评。 本期给大家带来一套php开发的开源版OneNav网址导航书签系统源码,感兴趣的朋友可以自行下载学习。 技术架构 PHP7.2 nginx SQLite3 JS CSS HTMLcnetos7以上 宝塔面板 文字搭建教程 下载源码&a…

【RuoYi-Vue-Plus】学习笔记 46 - Redisson(十二)布隆过滤器 BloomFilter 简单分析

文章目录前言参考目录测试方法配置说明Demo 方法功能调用流程分析1、布隆过滤器的初始化 tryInit1.1、创建布隆过滤器1.2、初始化布隆过滤器1.2.1、计算 bit 位数1.2.2、计算 Hash 函数个数1.2.3、保存过滤器配置Redis 实际执行结果2、将待比较元素存入布隆过滤器 addRedis 实际…

QT QMenuBra QMenu QAction 菜单栏 操作详解

本文详细的介绍了QMenuBra QMenu QAction 菜单栏的各种操作,例如操作:新建界面、加入菜单项、加入子菜单、新建二级子菜单、QAction分隔符、pMenuBar、点击信号、触发信号、设置图标、设置禁用、设置提示语 等操作 本文作者原创,未经允许禁止…

Eclipse常用设置

Eclipse 是著名的跨平台的自由集成开发环境(IDE)。最初主要用来 Java 语言开发,但是目前亦有人通过插件使其作为其他计算机语言比如 C 和 Python 的开发工具 目录 1.解决中文乱码设置propertiew编码 2.更改字体大小 3.设置护眼颜色 4.修…

Usaco Training刷怪旅 第二层第一题:Milking Cows

usaco training 关注我持续更新usaco training内容 Three farmers rise at 5 am each morning and head for the barn to milk three cows. The first farmer begins milking his cow at time 300 (measured in seconds after 5 am) and ends at time 1000. The second farmer …

Go语言入门【09】结构体

结构体 相比于Java,在Go语言中没有类的概念,但是多了结构体。结构体与Java中的类很像,是表示一系列同一类型或不同类型的数据构成的数据集合。 例如可以将学生抽象成一个结构体,每一个学生有以下属性: Name&#xf…

基于pytorch搭建CNN 对人像是否戴口罩进行检测分类 详细教程

项目介绍 我们将使用 CNN (卷积神经网络)和机器学习分类器创建一个检测一个人是否戴着口罩的分类器。它将检测一个人是否戴着口罩。 我们将从头开始学习,我将对每一步进行解释。我需要你对机器学习和数据科学有基本的了解。我已经在本地 Windows 10 机器上实现了它,如果你…

A-Level/IB/AP不同课程体系分数可以相互转换吗?

都知道国际学校有不同的课程体系,也会有不同的考试体系。比如A-Level、IB、SAT/ACT和AP;甚至还有国内的高考体系。所以可能有同学家长会问,不同体系之间的分数是否能够进行对比呢? 严格来讲,其实不好对比,但…

wy的leetcode刷题记录_Day59

wy的leetcode刷题记录_Day59 声明 本文章的所有题目信息都来源于leetcode 如有侵权请联系我删掉! 时间:2022-12-9 前言 目录wy的leetcode刷题记录_Day59声明前言1780. 判断一个数字是否可以表示成三的幂的和题目介绍思路代码收获63. 题目题目介绍思路代码收获178…

m基于RFID和DBSCAN聚类的InSAR室内三维定位算法的matlab仿真

目录 1.算法描述 2.仿真效果预览 3.MATLAB核心程序 4.完整MATLAB 1.算法描述 许多室内应用需要有关物体的空间信息。示例应用程序包括项目查找,对象级别映射和在仓库或库中管理的大型对象。然而,使用802.11,可见光或声学的基于位置的服务…

浏览器里console是异步的

console我一直以为是同步执行的,直到在一本书上看到,才了解到console本身有异步的特性。虽然在平常开发中经常使用console,但是真的没有意识到它的异步性。 下面就看下异步的实例 基础类型 该类型是我们开发中经常使用的,正是这…

01VSCode配置Anaconda 环境和调试环境

VSCode配置Anaconda 环境 Anaconda 简介 自带Python解释器Anaconda 附带了一大批常用数据科学包150 多个科学包及其依赖项Anaconda 是在 conda(一个包管理器和环境管理器)上发展出来的,包含了虚拟环境管理工具通过虚拟环境可以使不同的Pyth…

【Python深度学习】RNN循环神经网络结构讲解及序列回归问题实战(图文解释 附源码)

需要全部代码请点赞关注收藏后评论区留言私信~~~ 循环神经网络 循环神经网络(Recurrent Neural Network,RNN)是用于对序列的非线性特征进行学习的深度神经网络。循环神经网络的输入是有前后关联关系的序列。 循环神经网络可以用来解决与序列…

python数据预处理时缺失值的不同处理方式!

在使用python做数据分析的时候,经常需要先对数据做统一化的处理,缺失值的处理是经常会使用到的。 一般情况下,缺失值的处理要么是删除缺失数据所在的行,要么就是对缺失的单元格数据进行填充。 今天介绍的是使用差补法/均值/固定…

CSS -- 08. 移动WEB开发之流式布局

文章目录移动WEB开发之流式布局1 移动端基础1.1 浏览器现状1.2 手机屏幕现状1.3 移动端调试方法2 视口2.1 布局视口 layout viewport2.2 视觉视口 visual viewport2.3 理想视口 ideal viewport2.4 meta视口标签3 二倍图3.1 物理像素&物理像素比3.2 多倍图3.3 背景缩放 back…