【C++】基础入门

news2024/11/16 19:40:26

万字复习C++基础入门语法,适合学过C++的朋友用来复习查阅,可能不太适合0基础的朋友。

一.c++初识

(1) 第一个c++程序

最简单的格式

// 导入头文件
#include<iostream>  
// 简化对命名空间std下函数和对象的使用
using namespace std;  

// 主函数,c++程序的执行入口 
int main() {
	// 在终端输出文本 “Hello world” 并换行
	cout << "Hello world" << endl;  
    // 表示程序正常结束,返回给操作系统的退出码为0
	return 0;
}

(2) 注释

作用:在代码中加一些说明和解释,方便自己或其他程序员程序员阅读代码。

两种格式

  1. 单行注释// 描述信息
    • 通常放在一行代码的上方,或者一条语句的末尾,对该行代码说明
  2. 多行注释/* 描述信息 */
    • 通常放在一段代码的上方,对该段代码做整体说明

提示:编译器在编译代码时,会忽略注释的内容

(3) 变量

作用:给一段指定的内存空间起名,方便操作这段内存

语法数据类型 变量名 = 初始值;

示例:

#include<iostream>
using namespace std;

int main() {

	// 变量的定义
	// 语法:数据类型 变量名 = 初始值
	int a = 10;

	cout << "a = " << a << endl;

	return 0;
}

注意:c++在创建变量时,必须给变量一个初始值,否则会报错

(4) 常量

作用:用于记录程序中不可更改的数据

两种格式:

  1. #define 宏常量: #define 常量名 常量值

    • 通常在文件上方定义,表示一个常量
  2. const修饰的变量 const 数据类型 常量名 = 常量值

    • 通常在变量定义前加关键字const,修饰该变量为常量,不可修改

示例:

#include<iostream>
using namespace std;
//1、宏常量
#define day 7

int main() {

	cout << "一周里总共有 " << day << " 天" << endl;
	//day = 8;  //报错,宏常量不可以修改

	//2、const修饰变量
	const int month = 12;
	cout << "一年里总共有 " << month << " 个月份" << endl;
	//month = 24; //报错,常量是不可以修改的
	return 0;
}

提示:常量常常用来修饰一些固定不变,修改可能导致未知错误的数值

(5) 关键字

作用:关键字是c++中预先保留的单词(标识符)

  • 在定义变量或者常量时候,不要用关键字

c++关键字如下:

asmdoifreturntypedef
autodoubleinlineshorttypeid
booldynamic_castintsignedtypename
breakelselongsizeofunion
caseenummutablestaticunsigned
catchexplicitnamespacestatic_castusing
charexportnewstructvirtual
classexternoperatorswitchvoid
constfalseprivatetemplatevolatile
const_castfloatprotectedthiswchar_t
continueforpublicthrowwhile
defaultfriendregistertrue
deletegotoreinterpret_casttry

提示:在给变量或者常量起名称时候,不要用c++得关键字,否则会产生歧义。无需刻意记忆,很少会使用到,使用后程序也会报错。

(6) 标识符命名规则

作用:c++规定给标识符(变量、常量)命名时,有一套自己的规则:

  • 标识符不能是关键字
  • 标识符只能由字母、数字、下划线组成
  • 第一个字符必须为字母或下划线
  • 标识符中字母区分大小写

建议:给标识符命名时,争取做到见名知意的效果,方便自己和他人的阅读

二.数据类型

c++规定在创建一个变量或者常量时,必须要指定出相应的数据类型,否则无法给变量分配内存

(1) 整型

作用:整型变量表示的是整数类型的数据

c++中能够表示整型的类型有以下几种方式,区别在于所占内存空间不同

数据类型占用空间取值范围
short(短整型)2字节(-2^15 ~ 2^15-1)
int(整型)4字节(-2^31 ~ 2^31-1)
long(长整形)Windows为4字节,Linux为4字节(32位),8字节(64位)(-2^31 ~ 2^31-1)
long long(长长整形)8字节(-2^63 ~ 2^63-1)

(2) sizeof关键字

作用:利用sizeof关键字可以统计数据类型所占内存大小

语法: sizeof( 数据类型 或 变量)

示例:

#include<iostream>
using namespace std;
int main() {

	cout << "short 类型所占内存空间为: " << sizeof(short) << endl;

	cout << "int 类型所占内存空间为: " << sizeof(int) << endl;

	cout << "long 类型所占内存空间为: " << sizeof(long) << endl;

	cout << "long long 类型所占内存空间为: " << sizeof(long long) << endl;

	return 0;
}

(3) 实型(浮点型)

作用:用于表示小数

浮点型变量分为两种:

  1. 单精度float
  2. 双精度double

两者的区别在于表示的有效数字范围不同

数据类型占用空间有效数字范围
float4字节7 位有效数字
double8字节15~16 位有效数字

示例:

#include<iostream>
using namespace std;
int main() {

	float f1 = 3.14f;
	double d1 = 3.14;

	cout << f1 << endl;
	cout << d1<< endl;

	cout << "float  sizeof = " << sizeof(f1) << endl;
	cout << "double sizeof = " << sizeof(d1) << endl;

	//科学计数法
	float f2 = 3e2; // 3 * 10 ^ 2 
	cout << "f2 = " << f2 << endl;

	float f3 = 3e-2;  // 3 * 0.1 ^ 2
	cout << "f3 = " << f3 << endl;

	return 0;
}

(4) 字符型

作用:字符型变量用于显示单个字符

语法:char ch = 'a';

注意1:在显示字符型变量时,用单引号将字符括起来,不要用双引号

注意2:单引号内只能有一个字符,不可以是字符串

  • C和C++中字符型变量只占用1个字节
  • 字符型变量并不是把字符本身放到内存中存储,而是将对应的ASCII编码放入到存储单元

示例:

#include<iostream>
using namespace std;
int main() {
	
	char ch = 'a';
	cout << ch << endl;
	cout << sizeof(char) << endl;

	//ch = "abcde"; //错误,不可以用双引号
	//ch = 'abcde'; //错误,单引号内只能引用一个字符

	cout << (int)ch << endl;  //查看字符a对应的ASCII码
	ch = 97; //可以直接用ASCII给字符型变量赋值
	cout << ch << endl;

	return 0;
}

ASCII码表格:

ASCII控制字符ASCII字符ASCII字符ASCII字符
0NUT32(space)64@96
1SOH33!65A97a
2STX34"66B98b
3ETX35#67C99c
4EOT36$68D100d
5ENQ37%69E101e
6ACK38&70F102f
7BEL39,71G103g
8BS40(72H104h
9HT41)73I105i
10LF42*74J106j
11VT43+75K107k
12FF44,76L108l
13CR45-77M109m
14SO46.78N110n
15SI47/79O111o
16DLE48080P112p
17DCI49181Q113q
18DC250282R114r
19DC351383S115s
20DC452484T116t
21NAK53585U117u
22SYN54686V118v
23TB55787W119w
24CAN56888X120x
25EM57989Y121y
26SUB58:90Z122z
27ESC59;91[123{
28FS60<92/124|
29GS61=93]125}
30RS62>94^126`
31US63?95_127DEL

ASCII 码大致由以下两部分组成

  • ASCII 非打印控制字符: ASCII 表上的数字 0-31 分配给了控制字符,用于控制像打印机等一些外围设备。
  • ASCII 打印字符:数字 32-126 分配给了能在键盘上找到的字符,当查看或打印文档时就会出现。

(5) 转义字符

作用:用于表示一些不能显示出来的ASCII字符

现阶段我们常用的转义字符有: \n \\ \t

转义字符含义ASCII码值(十进制)
\a警报007
\b退格(BS) ,将当前位置移到前一列008
\f换页(FF),将当前位置移到下页开头012
\n换行(LF) ,将当前位置移到下一行开头010
\r回车(CR) ,将当前位置移到本行开头013
\t水平制表(HT) (跳到下一个TAB位置)009
\v垂直制表(VT)011
\\代表一个反斜线字符"\"092
代表一个单引号(撇号)字符039
"代表一个双引号字符034
?代表一个问号063
\0数字0000
\ddd8进制转义字符,d范围0~73位8进制
\xhh16进制转义字符,h范围09,af,A~F3位16进制

示例:

#include<iostream>
using namespace std;
int main() {
	
	cout << "\\" << endl;
	cout << "\tHello" << endl;
	cout << "\n" << endl;

	return 0;
}

(6) 字符串型

作用:用于表示一串字符

两种使用风格

  1. C风格字符串char 变量名[] = "字符串值"

    示例:

    #include<iostream>
    using namespace std;
    int main() {
    
    	char str1[] = "hello world";
    	cout << str1 << endl;
        
    	return 0;
    }
    

注意:C风格的字符串要用双引号括起来

  1. c++风格字符串string 变量名 = "字符串值"

    示例:

    #include<iostream>
    #include<string> // 需要导入头文件
    using namespace std;
    int main() {
    
    	string str = "hello world";
    	cout << str << endl;
    
    	return 0;
    }
    

注意:c++风格字符串,需要加入头文件#include<string>

(7) 布尔类型

作用:布尔数据类型(bool)代表真或假的值

bool类型只有两个值:

  • true — 真(本质是1)
  • false — 假(本质是0)

bool类型占1个字节大小

示例:

#include<iostream>
using namespace std;
int main() {

	bool flag = true;
	cout << flag << endl; // 1

	flag = false;
	cout << flag << endl; // 0

	cout << "size of bool = " << sizeof(bool) << endl; //1

	return 0;
}

(8) 数据的输入

作用:用于从键盘获取数据

语法: cin >> 变量

示例:

#include<iostream>
using namespace std;
int main(){

	//整型输入
	int a = 0;
	cout << "请输入整型变量:" << endl;
	cin >> a;
	cout << a << endl;

	//浮点型输入
	double d = 0;
	cout << "请输入浮点型变量:" << endl;
	cin >> d;
	cout << d << endl;

	//字符型输入
	char ch = 0;
	cout << "请输入字符型变量:" << endl;
	cin >> ch;
	cout << ch << endl;

	//字符串型输入
	string str;
	cout << "请输入字符串型变量:" << endl;
	cin >> str;
	cout << str << endl;

	//布尔类型输入
	bool flag = true;
	cout << "请输入布尔型变量:" << endl;
	cin >> flag;
	cout << flag << endl;
    
	return EXIT_SUCCESS;
}

三.运算符

作用:用于执行代码的运算

运算符类型作用
算术运算符用于处理四则运算
赋值运算符用于将表达式的值赋给变量
比较运算符用于表达式的比较,并返回一个真值或假值
逻辑运算符用于根据表达式的值返回真值或假值

(1) 算术运算符

作用:用于处理四则运算

算术运算符包括以下符号:

运算符术语示例结果
+正号+33
-负号-3-3
+10 + 515
-10 - 55
*10 * 550
/10 / 52
%取模(取余)10 % 31
++前置递增a=2; b=++a;a=3; b=3;
++后置递增a=2; b=a++;a=3; b=2;
前置递减a=2; b=–a;a=1; b=1;
后置递减a=2; b=a–;a=1; b=2;

示例1:

#include<iostream>
using namespace std;
//加减乘除
int main() {

	int a1 = 10;
	int b1 = 3;

	cout << a1 + b1 << endl;
	cout << a1 - b1 << endl;
	cout << a1 * b1 << endl;
	cout << a1 / b1 << endl;  //两个整数相除结果依然是整数

	int a2 = 10;
	int b2 = 20;
	cout << a2 / b2 << endl; 

	int a3 = 10;
	int b3 = 0;
	//cout << a3 / b3 << endl; //报错,除数不可以为0

	//两个小数可以相除
	double d1 = 0.5;
	double d2 = 0.25;
	cout << d1 / d2 << endl;

	return 0;
}

总结:在除法运算中,除数不能为0

示例2:

#include<iostream>
using namespace std;
//取模
int main() {

	int a1 = 10;
	int b1 = 3;

	cout << 10 % 3 << endl;

	int a2 = 10;
	int b2 = 20;

	cout << a2 % b2 << endl;

	int a3 = 10;
	int b3 = 0;

	//cout << a3 % b3 << endl; //取模运算时,除数也不能为0

	//两个小数不可以取模
	double d1 = 3.14;
	double d2 = 1.1;

	//cout << d1 % d2 << endl;

	return 0;
}

总结:只有整型变量可以进行取模运

示例3:

#include<iostream>
using namespace std;
//递增
int main() {

	//后置递增
	int a = 10;
	a++; //等价于a = a + 1
	cout << a << endl; // 11

	//前置递增
	int b = 10;
	++b;
	cout << b << endl; // 11

	//区别
	//前置递增先对变量进行++,再计算表达式
	int a2 = 10;
	int b2 = ++a2 * 10;
	cout << b2 << endl;

	//后置递增先计算表达式,后对变量进行++
	int a3 = 10;
	int b3 = a3++ * 10;
	cout << b3 << endl;

	return 0;
}

总结:前置递增先对变量进行++,再计算表达式,后置递增相反

(2) 赋值运算符

作用:用于将表达式的值赋给变量

赋值运算符包括以下几个符号:

运算符术语示例结果
=赋值a=2; b=3;a=2; b=3;
+=加等于a=0; a+=2;a=2;
-=减等于a=5; a-=3;a=2;
*=乘等于a=2; a*=2;a=4;
/=除等于a=4; a/=2;a=2;
%=模等于a=3; a%2;a=1;

示例:

#include<iostream>
using namespace std;
int main() {

	//赋值运算符
	// =
	int a = 10;
	a = 100;
	cout << "a = " << a << endl;

	// +=
	a = 10;
	a += 2; // 等同于 a = a + 2;
	cout << "a = " << a << endl;

	// -=
	a = 10;
	a -= 2; // 等同于 a = a - 2
	cout << "a = " << a << endl;

	// *=
	a = 10;
	a *= 2; // 等同于 a = a * 2
	cout << "a = " << a << endl;

	// /=
	a = 10;
	a /= 2;  // 等同于 a = a / 2;
	cout << "a = " << a << endl;

	// %=
	a = 10;
	a %= 2;  // 等同于 a = a % 2;
	cout << "a = " << a << endl;

	return 0;
}

(3) 比较运算符

作用:用于表达式的比较,并返回一个真值或假值

比较运算符有以下符号:

运算符术语示例结果
==相等于4 == 30
!=不等于4 != 31
<小于4 < 30
>大于4 > 31
<=小于等于4 <= 30
>=大于等于4 >= 11

示例:

#include<iostream>
using namespace std;
int main() {

	int a = 10;
	int b = 20;

	cout << (a == b) << endl; // 0 

	cout << (a != b) << endl; // 1

	cout << (a > b) << endl; // 0

	cout << (a < b) << endl; // 1

	cout << (a >= b) << endl; // 0

	cout << (a <= b) << endl; // 1
	
	return 0;
}

注意:C和c++ 语言的比较运算中,“真”用数字“1”来表示, “假”用数字“0”来表示。

(4) 逻辑运算符

作用:用于根据表达式的值返回真值或假值

逻辑运算符有以下符号:

运算符术语示例结果
!!a如果a为假,则!a为真; 如果a为真,则!a为假。
&&a && b如果a和b都为真,则结果为真,否则为假。
||a || b如果a和b有一个为真,则结果为真,二者都为假时,结果为假。

示例1:逻辑非

#include<iostream>
using namespace std;
//逻辑运算符  --- 非
int main() {

	int a = 10;

	cout << !a << endl; // 0

	cout << !!a << endl; // 1

	return 0;
}

逻辑运算符总结: 真变假,假变真

示例2:逻辑与

#include<iostream>
using namespace std;
//逻辑运算符  --- 与
int main() {

	int a = 10;
	int b = 10;

	cout << (a && b) << endl;// 1

	a = 10;
	b = 0;

	cout << (a && b) << endl;// 0 

	a = 0;
	b = 0;

	cout << (a && b) << endl;// 0

	system("pause");

	return 0;
}

总结:逻辑运算符总结: 同真为真,其余为假

示例3:逻辑或

#include<iostream>
using namespace std;
//逻辑运算符  --- 或
int main() {

	int a = 10;
	int b = 10;

	cout << (a || b) << endl;// 1

	a = 10;
	b = 0;

	cout << (a || b) << endl;// 1 

	a = 0;
	b = 0;

	cout << (a || b) << endl;// 0

	return 0;
}

逻辑运算符总结: 同假为假,其余为真

四.程序流程结构

C/c++支持最基本的三种程序运行结构:顺序结构、选择结构、循环结构

  • 顺序结构:程序按顺序执行,不发生跳转
  • 选择结构:依据条件是否满足,有选择的执行相应功能
  • 循环结构:依据条件是否满足,循环多次执行某段代码

(1) 选择结构

(1.1) if 语句

作用:满足条件则执行一段(零至多行)特定语句

if 语句的三种形式:

  • 单行格式if语句

  • 多行格式if语句

  • 多条件的if语句

  1. 单行格式if语句:if(条件){ 条件满足执行的语句 }

在这里插入图片描述

示例:

#include<iostream>
using namespace std;
int main() {

	//选择结构-单行if语句
	//输入一个分数,如果分数大于600分,视为考上一本大学,并在屏幕上打印
	int score = 0;
	cout << "请输入一个分数:" << endl;
	cin >> score;

	cout << "您输入的分数为: " << score << endl;

	//if语句
    //当score > 600时执行其中打印语句,否则跳过不执行 
	if (score > 600)
    {
		cout << "我考上了一本大学!!!" << endl;
	}

	return 0;
}

注意:if条件表达式后不要加分号

  1. 多行格式if语句:if(条件){ 条件满足执行的语句 }else{ 条件不满足执行的语句 };

在这里插入图片描述

示例:

#include<iostream>
using namespace std;
int main() {

	int score = 0;

	cout << "请输入考试分数:" << endl;

	cin >> score;

     //当score > 600时执行其中打印语句,否则执行else中的语句 
	if (score > 600)
	{
		cout << "我考上了大学" << endl;
	}
	else
	{
		cout << "我没有考上大学" << endl;
	}

	return 0;
}
  1. 多条件的if语句:if(条件1){ 条件1满足执行的语句 }else if(条件2){条件2满足执行的语句}... else{ 都不满足执行的语句}
    在这里插入图片描述

示例:

#include<iostream>
using namespace std;
int main() {
	int score = 0;

	cout << "请输入考试分数:" << endl;

	cin >> score;
	//执行某个满足条件的分支中的打印语句,若都不成立则执行else中的语句 
	if (score > 600)
	{
		cout << "我考上了一本大学" << endl;
	}
	else if (score > 500)
	{
		cout << "我考上了二本大学" << endl;
	}
	else if (score > 400)
	{
		cout << "我考上了三本大学" << endl;
	}
	else
	{
		cout << "我未考上本科" << endl;
	}

	return 0;
}

嵌套if语句:在if语句中,可以嵌套使用if语句,达到更精确的条件判断

案例需求:

  • 提示用户输入一个高考考试分数,根据分数做如下判断
  • 分数如果大于600分视为考上一本,大于500分考上二本,大于400考上三本,其余视为未考上本科;
  • 在一本分数中,如果大于700分,考入北大,大于650分,考入清华,大于600考入人大。

示例:

#include<iostream>
using namespace std;
int main() {

	int score = 0;

	cout << "请输入考试分数:" << endl;

	cin >> score;

	if (score > 600)
	{
		cout << "我考上了一本大学" << endl;
		if (score > 700)
		{
			cout << "我考上了北大" << endl;
		}
		else if (score > 650)
		{
			cout << "我考上了清华" << endl;
		}
		else
		{
			cout << "我考上了人大" << endl;
		}
	}
	else if (score > 500)
	{
		cout << "我考上了二本大学" << endl;
	}
	else if (score > 400)
	{
		cout << "我考上了三本大学" << endl;
	}
	else
	{
		cout << "我未考上本科" << endl;
	}

	return 0;
}

(1.2) 三目运算符

作用: 可以通过三目运算符便捷的实现简单的判断

语法:表达式1 ? 表达式2 :表达式3

解释:

如果表达式1的值为真,执行表达式2,并返回表达式2的结果;

如果表达式1的值为假,执行表达式3,并返回表达式3的结果。

示例:

#include<iostream>
using namespace std;
int main() {

	int a = 10;
	int b = 20;
	int c = 0;

	c = a > b ? a : b;
	cout << "c = " << c << endl; // 20

	//c++中三目运算符返回的是变量,可以继续赋值
	(a > b ? a : b) = 100;

	cout << "a = " << a << endl; // 10
	cout << "b = " << b << endl; // 100
	cout << "c = " << c << endl; // 20

	return 0;
}

总结:和if语句比较,三目运算符优点是短小整洁,缺点是如果用嵌套,结构不清晰

(1.3) switch语句

作用:执行多条件分支语句

语法:

switch(表达式)
{

	case 结果1:执行语句;break;

	case 结果2:执行语句;break;
        
	...
        
	default:执行语句;break;
}

示例:

#include<iostream>
using namespace std;
int main() {

	// 请给电影评分 
	// 10 ~ 9   经典   
	// 8 ~ 7   非常好
	// 6 ~ 5   一般
	// 5分以下 烂片
	int score = 0;
	cout << "请给电影打分" << endl;
	cin >> score;

	switch (score)
	{
	case 10:
	case 9:
		cout << "经典" << endl;
		break;
	case 8:
		cout << "非常好" << endl;
		break;
	case 7:
	case 6:
		cout << "一般" << endl;
		break;
	default:
		cout << "烂片" << endl;
		break;
	}

	return 0;
}

注意1:switch语句中表达式类型只能是整型或者字符型

注意2:case里如果没有break,那么程序会一直向下执行

总结:与if语句比,对于多条件判断时,switch的结构清晰,执行效率高,缺点是switch不可以判断区间

(2) 循环结构

(2.1) while语句

作用:满足循环条件,重复执行循环语句

语法 while(循环条件){ 循环语句 }

解释:只要循环条件的结果为真,就执行循环语句

在这里插入图片描述

示例:

#include<iostream>
using namespace std;
int main() {
	int num = 0;
	while (num < 10)
	{
		cout << "num = " << num << endl;
		num++;
	}

	return 0;
}

注意:在执行循环语句时候,程序必须提供跳出循环的出口(使循环条件变为false),否则出现死循环

(2.2) do…while语句

作用: 满足循环条件,执行循环语句

语法: do{ 循环语句 } while(循环条件);

解释:先执行一次代码,再判断只要循环条件的结果为真,就执行循环语句

在这里插入图片描述

示例:

#include<iostream>
using namespace std;
int main() {
    
	int num = 0;

	do
	{
		cout << num << endl;
		num++;
	} while (num < 10);

	return 0;
}

总结:与while循环区别在于,do…while先执行一次循环语句,再判断循环条件,而while是先判断条件再决定是否执行

(2.3) for语句

作用: 满足循环条件,执行循环语句

语法: for(起始表达式;条件表达式;末尾循环体) { 循环语句; }

示例:

#include<iostream>
using namespace std;
int main() {

	for (int i = 0; i < 10; i++)
	{
		cout << i << endl;
	}
    
	return 0;
}

详解:

在这里插入图片描述

注意:for循环中的表达式,要用分号进行分隔

总结:while , do…while, for都是开发中常用的循环语句,for循环结构比较清晰,比较常用

(2.4) 嵌套循环

作用: 在循环体中再嵌套一层循环,解决一些实际问题

例如我们想在屏幕中打印如下图片,就需要利用嵌套循环

在这里插入图片描述

示例:

#include<iostream>
using namespace std;
int main() {
	//外层循环执行1次,内层循环执行1轮
	for (int i = 0; i < 10; i++)
	{
		for (int j = 0; j < 10; j++)
		{
			cout << "*" << " ";
		}
		cout << endl;
	}

	return 0;
}

(3) 跳转语句

(3.1) break语句

作用: 用于跳出选择结构或者循环结构

break使用的时机:

  • 出现在switch条件语句中,作用是终止case并跳出switch
  • 出现在循环语句中,作用是跳出当前的循环语句
  • 出现在嵌套循环中,跳出最近的内层循环语句

示例1:

#include<iostream>
using namespace std;
int main() {
	//1、在switch 语句中使用break
	cout << "请选择您挑战副本的难度:" << endl;
	cout << "1、普通" << endl;
	cout << "2、中等" << endl;
	cout << "3、困难" << endl;

	int num = 0;

	cin >> num;

	switch (num)
	{
	case 1:
		cout << "您选择的是普通难度" << endl;
		break;
	case 2:
		cout << "您选择的是中等难度" << endl;
		break;
	case 3:
		cout << "您选择的是困难难度" << endl;
		break;
	}
    
	return 0;
}

示例2:

#include<iostream>
using namespace std;
int main() {
	//2、在循环语句中用break
	for (int i = 0; i < 10; i++)
	{
		if (i == 5)
		{
			break; //跳出循环语句
		}
		cout << i << endl;
	}

	return 0;
}

示例3:

#include<iostream>
using namespace std;
int main() {
	//在嵌套循环语句中使用break,退出本次内层循环
	for (int i = 0; i < 10; i++)
	{
		for (int j = 0; j < 10; j++)
		{
			if (j == 5)
			{
				break;
			}
			cout << "*" << " ";
		}
		cout << endl;
	}

	return 0;
}

(3.2) continue语句

作用:循环语句中,跳过本次循环中余下尚未执行的语句,继续执行下一次循环

示例:

#include<iostream>
using namespace std;
int main() {

	for (int i = 0; i < 100; i++)
	{
		if (i % 2 == 0)
		{
			continue;
		}
		cout << i << endl;
	}

	return 0;
}

注意:continue并没有使整个循环终止,而break会跳出循环

(3.3) goto语句

作用:可以无条件跳转至标记处语句

语法goto 标记;配合 标记:

解释:如果标记的名称存在,执行到goto语句时,会跳转到标记的位置

示例:

#include<iostream>
using namespace std;
int main() {

	cout << "1" << endl;

	goto FLAG;
	// 将跳过下面三行代码直接执行 FLAG 后面代码
	cout << "2" << endl;
	cout << "3" << endl;
	cout << "4" << endl;

	FLAG:

	cout << "5" << endl;

	return 0;
}

注意:在程序中不建议使用goto语句,以免造成程序流程混乱

五.数组

(1) 概述

所谓数组,就是一个集合,里面存放了相同类型的数据元素

特点1:数组中的每个数据元素都是相同的数据类型

特点2:数组是由连续的内存位置组成的

在这里插入图片描述

(2) 一维数组

(2.1) 定义方式

一维数组定义的三种方式:

  1. 数据类型 数组名[ 数组长度 ];
  2. 数据类型 数组名[ 数组长度 ] = { 值1,值2 ...};
  3. 数据类型 数组名[ ] = { 值1,值2 ...};

示例

#include<iostream>
using namespace std;
int main() {

	//定义方式1
	//数据类型 数组名[元素个数];
	int score[10];

	//利用下标赋值
	score[0] = 100;
	score[1] = 99;
	score[2] = 85;

	//利用下标输出
	cout << score[0] << endl;
	cout << score[1] << endl;
	cout << score[2] << endl;


	//第二种定义方式
	//数据类型 数组名[元素个数] =  {值1,值2 ,值3 ...};
	//如果{}内不足10个数据,剩余数据用0补全
	int score2[10] = { 100, 90,80,70,60,50,40,30,20,10 };
	
	//逐个输出
	//cout << score2[0] << endl;
	//cout << score2[1] << endl;

	//一个一个输出太麻烦,因此可以利用循环进行输出
	for (int i = 0; i < 10; i++)
	{
		cout << score2[i] << endl;
	}

	//定义方式3
	//数据类型 数组名[] =  {值1,值2 ,值3 ...};
	int score3[] = { 100,90,80,70,60,50,40,30,20,10 };

	for (int i = 0; i < 10; i++)
	{
		cout << score3[i] << endl;
	}

	return 0;
}

总结1:数组名的命名规范与变量名命名规范一致,不要和变量重名

总结2:数组中下标是从0开始索引

(2.2) 数组名用途

一维数组名称的用途

  1. 可以统计整个数组在内存中的长度
  2. 可以获取数组在内存中的首地址

示例:

#include<iostream>
using namespace std;
int main() {

	//数组名用途
	//1、可以获取整个数组占用内存空间大小
	int arr[10] = { 1,2,3,4,5,6,7,8,9,10 };

	cout << "整个数组所占内存空间为: " << sizeof(arr) << endl;
	cout << "每个元素所占内存空间为: " << sizeof(arr[0]) << endl;
	cout << "数组的元素个数为: " << sizeof(arr) / sizeof(arr[0]) << endl;

	//2、可以通过数组名获取到数组首地址
	cout << "数组首地址为: " << (int)arr << endl;
	cout << "数组中第一个元素地址为: " << (int)&arr[0] << endl;
	cout << "数组中第二个元素地址为: " << (int)&arr[1] << endl;

	//arr = 100; 错误,数组名是常量,因此不可以赋值

	return 0;
}

注意:数组名是常量,不可以赋值

总结1:直接打印数组名,可以查看数组所占内存的首地址

总结2:对数组名进行sizeof,可以获取整个数组占内存空间的大小

总结3:对数组某个元素进行sizeof,可以获取单个元素占内存空间的大小

(3) 二维数组

二维数组就是在一维数组上,多加一个维度。

在这里插入图片描述

(3.1) 定义方式

二维数组定义的四种方式:

  1. 数据类型 数组名[ 行数 ][ 列数 ];
  2. 数据类型 数组名[ 行数 ][ 列数 ] = { {数据1,数据2 } , {数据3,数据4 } };
  3. 数据类型 数组名[ 行数 ][ 列数 ] = { 数据1,数据2,数据3,数据4 };
  4. 数据类型 数组名[ ][ 列数 ] = { 数据1,数据2,数据3,数据4 };

建议:以上4种定义方式,利用第二种更加直观,提高代码的可读性

示例:

#include<iostream>
using namespace std;
int main() {

	//方式1  
	//数组类型 数组名 [行数][列数]
	int arr[2][3];
	arr[0][0] = 1;
	arr[0][1] = 2;
	arr[0][2] = 3;
	arr[1][0] = 4;
	arr[1][1] = 5;
	arr[1][2] = 6;

	for (int i = 0; i < 2; i++)
	{
		for (int j = 0; j < 3; j++)
		{
			cout << arr[i][j] << " ";
		}
		cout << endl;
	}

	//方式2
	//数据类型 数组名[行数][列数] = { {数据1,数据2 } ,{数据3,数据4 } };
	int arr2[2][3] =
	{
		{1,2,3},
		{4,5,6}
	};

	//方式3
	//数据类型 数组名[行数][列数] = { 数据1,数据2 ,数据3,数据4  };
	int arr3[2][3] = { 1,2,3,4,5,6 }; 

	//方式4 
	//数据类型 数组名[][列数] = { 数据1,数据2 ,数据3,数据4  };
	int arr4[][3] = { 1,2,3,4,5,6 };

	return 0;
}

总结:在定义二维数组时,如果初始化了数据,可以省略行数

(3.2) 数组名用途

  • 查看二维数组所占内存空间
  • 获取二维数组首地址

示例:

#include<iostream>
using namespace std;
int main() {

	//二维数组数组名
	int arr[2][3] =
	{
		{1,2,3},
		{4,5,6}
	};

	cout << "二维数组大小: " << sizeof(arr) << endl;
	cout << "二维数组一行大小: " << sizeof(arr[0]) << endl;
	cout << "二维数组元素大小: " << sizeof(arr[0][0]) << endl;

	cout << "二维数组行数: " << sizeof(arr) / sizeof(arr[0]) << endl;
	cout << "二维数组列数: " << sizeof(arr[0]) / sizeof(arr[0][0]) << endl;

	//地址
	cout << "二维数组首地址:" << arr << endl;
	cout << "二维数组第一行地址:" << arr[0] << endl;
	cout << "二维数组第二行地址:" << arr[1] << endl;

	cout << "二维数组第一个元素地址:" << &arr[0][0] << endl;
	cout << "二维数组第二个元素地址:" << &arr[0][1] << endl;

	return 0;
}

总结1:二维数组名就是这个数组的首地址

总结2:对二维数组名进行sizeof时,可以获取整个二维数组占用的内存空间大小

六.函数

(1) 概述

作用:将一段经常使用的代码封装起来,减少重复代码

一个较大的程序,一般分为若干个程序块,每个模块实现特定的功能。

(2) 函数的定义

函数的定义一般主要有5个步骤:

1、返回值类型

2、函数名

3、参数表列

4、函数体语句

5、return 表达式

语法:

返回值类型 函数名(参数列表)
{
       函数体语句
           
       return 表达式
}
  • 返回值类型 :一个函数可以返回一种类型的值。
  • 函数名:给函数起个名称
  • 参数列表:使用该函数时,需要传入对应类型的数据
  • 函数体语句:花括号内的代码,函数内需要执行的语句
  • return表达式: 和返回值类型挂钩,函数执行完后,返回相应的数据

示例:定义一个加法函数,实现两个数相加

//函数定义
int add(int num1, int num2)
{
	int sum = num1 + num2;
	return sum;
}

(3) 函数的调用

功能:使用定义好的函数

语法: 函数名(参数)

示例:

//函数定义
int add(int num1, int num2) 
{
	int sum = num1 + num2;
	return sum;
}

#include<iostream>
using namespace std;
int main() {

	int a = 10;
	int b = 10;
	//调用add函数
	int sum = add(a, b);
	cout << "sum = " << sum << endl;

	a = 100;
	b = 100;

	sum = add(a, b);
	cout << "sum = " << sum << endl;

	return 0;
}

总结:函数定义里小括号内称为形参,函数调用时传入的参数称为实参

(4) 值传递

  • 所谓值传递,就是函数调用时实参将数值传入给形参
  • 值传递时,如果形参值发生,并不会影响实参

示例:

void swap(int num1, int num2) //定义中的num1,num2称为形式参数,简称形参
{
	cout << "交换前:" << endl;
	cout << "num1 = " << num1 << endl;
	cout << "num2 = " << num2 << endl;

	int temp = num1;
	num1 = num2;
	num2 = temp;

	cout << "交换后:" << endl;
	cout << "num1 = " << num1 << endl;
	cout << "num2 = " << num2 << endl;

	//return; 当函数声明为void时,不需要返回值,可以不写return
}

#include<iostream>
using namespace std;
int main() {

	int a = 10;
	int b = 20;

	swap(a, b); //调用时的a,b称为实际参数,简称实参

	cout << "mian中的 a = " << a << endl;
	cout << "mian中的 b = " << b << endl;

	return 0;
}

总结: 值传递时,形参值变化是修改不了实参的值

(5) 函数的常见形式

常见的函数样式有4种

  1. 无参无返
  2. 有参无返
  3. 无参有返
  4. 有参有返

示例:

//1、 无参无返
void test01()
{
	//void a = 10; //无类型不可以创建变量,原因无法分配内存
	cout << "this is test01" << endl;
}

//2、 有参无返
void test02(int a)
{
	cout << "this is test02" << endl;
	cout << "a = " << a << endl;
}

//3、无参有返
int test03()
{
	cout << "this is test03 " << endl;
	return 10;
}

//4、有参有返
int test04(int a, int b)
{
	cout << "this is test04 " << endl;
	int sum = a + b;
	return sum;
}

#include<iostream>
using namespace std;
int main() {

    int a = 10;
	int b = 20;
    
    // 1、无参无返
    test01();
    
    // 2、有参无返
    test02(a);

	// 3、无参有返
	b = test03();
    
    // 4、有参有返
    b = test04(a,b)
        
	return 0;
}

(6) 函数的声明

作用: 告诉编译器函数名称及如何调用函数。函数的实际主体可以单独定义。

  • 函数的声明可以多次,但是函数的定义只能有一次

示例:

//声明可以多次,定义只能一次
//声明
int max(int a, int b);
int max(int a, int b);
//定义
int max(int a, int b)
{
	return a > b ? a : b;
}

#include<iostream>
using namespace std;
int main() {


	int a = 100;
	int b = 200;

	cout << max(a, b) << endl;

	system("pause");

	return 0;
}

作用:若未声明函数,如果在main函数中使用了函数则函数定义必须写在main函数之上,否则在main函数中使用会抛出错误。如果事先声明了函数,则函数定义可以写在main函数之上或之下。

(7) 函数的分文件编写

作用:让代码结构更加清晰

函数分文件编写一般有4个步骤

  1. 创建后缀名为.h的头文件
  2. 创建后缀名为.cpp的源文件
  3. 在头文件中写函数的声明
  4. 在源文件中写函数的定义

示例:

// 创建 swap.h 文件
#include<iostream>
using namespace std;

//实现两个数字交换的函数声明
void swap(int a, int b);
// 创建 swap.cpp 文件
#include "swap.h"

void swap(int a, int b)
{
	int temp = a;
	a = b;
	b = temp;

	cout << "a = " << a << endl;
	cout << "b = " << b << endl;
}
// 创建带 main 函数的文件
#include "swap.h"
int main() {

	int a = 100;
	int b = 200;
    
	swap(a, b);

	return 0;
}

七.指针

(1) 概念

作用:可以通过指针间接访问内存

  • 内存编号是从0开始记录的,一般用十六进制数字表示
  • 可以利用指针变量保存地址

(2) 定义和使用

指针变量定义语法: 数据类型 * 变量名;
在这里插入图片描述

示例:

#include<iostream>
using namespace std;
int main() {

	int a = 10; //定义整型变量a
    
	//1、指针的定义
	//指针定义语法: 数据类型 * 变量名 ;
	int * p;

	//指针变量赋值
	p = &a; //指针指向变量a的地址
	cout << &a << endl; //打印数据a的地址
	cout << p << endl;  //打印指针变量p

	//2、指针的使用
	//通过*操作指针变量指向的内存
	cout << "*p = " << *p << endl;

	return 0;
}

指针变量和普通变量的区别

  • 普通变量存放的是数据,指针变量存放的是地址
  • 指针变量可以通过 * 操作符,操作指针变量指向的内存空间,这个过程称为解引用

总结1: 我们可以通过 & 符号 获取变量的地址

总结2:利用指针可以记录地址

总结3:对指针变量解引用,可以操作指针指向的内存

(3) 所占内存空间

提问:指针也是种数据类型,那么这种数据类型占用多少内存空间?

示例:

#include<iostream>
using namespace std;
int main() {

	int a = 10;

	int * p;
	p = &a; //指针指向数据a的地址

	cout << *p << endl; //* 解引用
	cout << sizeof(p) << endl;
	cout << sizeof(char *) << endl;
	cout << sizeof(float *) << endl;
	cout << sizeof(double *) << endl;

	return 0;
}

总结:

所有指针类型在32位操作系统下是4个字节

所有指针类型在64位操作系统下是8个字节

(4) 空指针和野指针

空指针:指针变量指向内存中编号为 0 的空间

用途:初始化指针变量

注意:空指针指向的内存是不可以访问的

示例:空指针

#include<iostream>
using namespace std;
int main() {

	//指针变量p指向内存地址编号为0的空间
	int * p = NULL;

	//访问空指针报错 
	//内存编号0 ~255为系统占用内存,不允许用户访问
	cout << *p << endl;

	return 0;
}

野指针:指针变量指向非法的内存空间

示例:野指针

#include<iostream>
using namespace std;
int main() {

	//指针变量p指向内存地址编号为0x1100的空间
	int * p = (int *)0x1100;

	//访问野指针报错 
	cout << *p << endl;

	return 0;
}

总结:空指针和野指针都不是我们申请的空间,因此不要访问,访问会抛出错误。

(5) const修饰指针

const修饰指针有三种情况

  1. const修饰指针 — 常量指针
    • 语法:const 数据类型 * 变量名 = 初始值;
    • 修饰的是指针,指针指向可以改,指针指向的值不可以更改
  2. const修饰常量 — 指针常量
    • 语法:数据类型 * const 变量名 = 初始值;
    • 修饰的是常量,指针指向不可以改,指针指向的值可以更改
  3. const既修饰指针,又修饰常量
    • 语法: const 数据类型 * const 变量名 = 初始值;
    • 既修饰指针又修饰常量,指针指向和指针指向的值都不可以改

示例:

#include<iostream>
using namespace std;
int main() {

	int a = 10;
	int b = 10;

	//const修饰的是指针,指针指向可以改,指针指向的值不可以更改
	const int * p1 = &a; 
	p1 = &b; //正确
	//*p1 = 100;  报错
	
	//const修饰的是常量,指针指向不可以改,指针指向的值可以更改
	int * const p2 = &a;
	//p2 = &b; //错误
	*p2 = 100; //正确

    //const既修饰指针又修饰常量
	const int * const p3 = &a;
	//p3 = &b; //错误
	//*p3 = 100; //错误

	return 0;
}

记忆技巧:看const右侧紧跟着的是指针还是常量, 是指针就是常量指针,是常量就是指针常量

(6) 指针和数组

作用:利用指针访问数组中元素

示例:

#include<iostream>
using namespace std;
int main() {

	int arr[] = { 1,2,3,4,5,6,7,8,9,10 };

	int * p = arr;  //指向数组的指针

	cout << "第一个元素: " << arr[0] << endl;
	cout << "指针访问第一个元素: " << *p << endl;

	for (int i = 0; i < 10; i++)
	{
		//利用指针遍历数组
		cout << *p << endl;
		p++;  // 递增一个单位,从而指向数组的下一个元素。
	}
    
	return 0;
}

(7) 指针和函数

作用:利用指针作函数参数,可以修改传递的实参的值

示例:

//值传递
void swap1(int a ,int b)
{
	int temp = a;
	a = b; 
	b = temp;
}
//地址传递
void swap2(int * p1, int *p2)
{
	int temp = *p1;
	*p1 = *p2;
	*p2 = temp;
}

#include<iostream>
using namespace std;
int main() {

	int a = 10;
	int b = 20;
	swap1(a, b); // 值传递不会改变实参

	swap2(&a, &b); //地址传递会改变实参

	cout << "a = " << a << endl;

	cout << "b = " << b << endl;

	return 0;
}

总结:如果不想修改实参,就用值传递,如果想修改实参,就用地址传递

(8) 指针、数组、函数

案例描述:封装一个函数,利用冒泡排序,实现对整型数组的升序排序

例如数组:int arr[10] = { 4,3,6,9,1,2,10,8,7,5 };

示例:

//冒泡排序函数
void bubbleSort(int * arr, int len)  //int * arr 也可以写为int arr[]
{
	for (int i = 0; i < len - 1; i++)
	{
		for (int j = 0; j < len - 1 - i; j++)
		{
			if (arr[j] > arr[j + 1])
			{
				int temp = arr[j];
				arr[j] = arr[j + 1];
				arr[j + 1] = temp;
			}
		}
	}
}

//打印数组函数
void printArray(int arr[], int len)
{
	for (int i = 0; i < len; i++)
	{
		cout << arr[i] << endl;
	}
}

#include<iostream>
using namespace std;
int main() {

	int arr[10] = { 4,3,6,9,1,2,10,8,7,5 };
	int len = sizeof(arr) / sizeof(int);

	bubbleSort(arr, len);

	printArray(arr, len);

	return 0;
}

总结:当数组名传入到函数作为参数时,被退化为指向首元素的指针

八.结构体

(1) 概念

结构体属于用户自定义的数据类型,允许用户存储不同的数据类型

(2) 定义和使用

结构体定义语法:struct 结构体名 { 结构体成员列表 };

通过结构体创建变量的方式有三种

  • struct 结构体名 变量名
  • struct 结构体名 变量名 = { 成员1值 , 成员2值...}
  • 定义结构体时顺便创建变量

示例:

// 结构体定义
struct student
{
	//成员列表
	string name;  //姓名
	int age;      //年龄
	int score;    //分数
}; 

// 结构体定义
// struct student
// {
	//成员列表
//	string name;  //姓名
//	int age;      //年龄
//	int score;    //分数
// } stu3; //结构体变量创建方式3 : 定义结构体时顺便创建变量

#include<iostream>
using namespace std;
int main() {

	//结构体变量创建方式1
	struct student stu1;
   // student stu1; //struct 关键字可以省略

	stu1.name = "张三";
	stu1.age = 18;
	stu1.score = 100;
	
	cout << "姓名:" << stu1.name << " 年龄:" << stu1.age  << " 分数:" << stu1.score << endl;

	//结构体变量创建方式2
	struct student stu2 = { "李四",19,60 };
   // student stu1 = { "李四",19,60 }; //struct 关键字可以省略
    
	cout << "姓名:" << stu2.name << " 年龄:" << stu2.age  << " 分数:" << stu2.score << endl;


	stu3.name = "王五";
	stu3.age = 18;
	stu3.score = 80;
	

	cout << "姓名:" << stu3.name << " 年龄:" << stu3.age  << " 分数:" << stu3.score << endl;

	return 0;
}

总结1:定义结构体时的关键字是struct,不可省略

总结2:创建结构体变量时,关键字struct可以省略

总结3:结构体变量利用操作符 . 访问成员

(3) 结构体数组

作用:将自定义的结构体放入到数组中方便维护

语法: struct 结构体名 数组名[元素个数] = { {} , {} , ... {} }

示例:

//结构体定义
struct student
{
	//成员列表
	string name;  //姓名
	int age;      //年龄
	int score;    //分数
}

#include<iostream>
using namespace std;
int main() {
	
	// 创建结构体数组
	struct student arr[3]=
	{
		{"张三",18,80 },
		{"李四",19,60 },
		{"王五",20,70 }
	};

    // 遍历打印
	for (int i = 0; i < 3; i++)
	{
		cout << "姓名:" << arr[i].name << " 年龄:" << arr[i].age << " 分数:" << arr[i].score << endl;
	}

	return 0;
}

(4) 结构体指针

作用:通过指针访问结构体中的成员

  • 利用操作符 -> 可以通过结构体指针访问结构体属性

示例:

//结构体定义
struct student
{
	//成员列表
	string name;  //姓名
	int age;      //年龄
	int score;    //分数
};

#include<iostream>
using namespace std;
int main() {
	
	struct student stu = { "张三",18,100, };
	
	struct student * p = &stu;
	
	p->score = 80; //指针通过 -> 操作符可以访问成员

	cout << "姓名:" << p->name << " 年龄:" << p->age << " 分数:" << p->score << endl;

	return 0;
}

总结:结构体指针可以通过 -> 操作符 来访问结构体中的成员

(5) 嵌套结构体

作用: 结构体中的成员可以是另一个结构体

例如:每个老师辅导一个学员,一个老师的结构体中,记录一个学生的结构体

示例:

//学生结构体定义
struct student
{
	//成员列表
	string name;  //姓名
	int age;      //年龄
	int score;    //分数
};

//教师结构体定义
struct teacher
{
    //成员列表
	int id; //职工编号
	string name;  //教师姓名
	int age;   //教师年龄
	struct student stu; //子结构体 学生
};

#include<iostream>
using namespace std;
int main() {

	struct teacher t1;
	t1.id = 10000;
	t1.name = "老王";
	t1.age = 40;

	t1.stu.name = "张三";
	t1.stu.age = 18;
	t1.stu.score = 100;

	cout << "教师 职工编号: " << t1.id << " 姓名: " << t1.name << " 年龄: " << t1.age << endl;
	
	cout << "辅导学员 姓名: " << t1.stu.name << " 年龄:" << t1.stu.age << " 考试分数: " << t1.stu.score << endl;

	return 0;
}

总结:在结构体中可以定义另一个结构体作为成员,用来解决实际问题

(6) 充当函数参数

作用:将结构体作为参数向函数中传递

传递方式有两种:

  • 值传递
  • 地址传递

示例:

//学生结构体定义
struct student
{
	//成员列表
	string name;  //姓名
	int age;      //年龄
	int score;    //分数
};

//值传递
void printStudent(student stu )
{
	stu.age = 28;
	cout << "子函数中 姓名:" << stu.name << " 年龄: " << stu.age  << " 分数:" << stu.score << endl;
}

//地址传递
void printStudent2(student *stu)
{
	stu->age = 28;
	cout << "子函数中 姓名:" << stu->name << " 年龄: " << stu->age  << " 分数:" << stu->score << endl;
}

#include<iostream>
using namespace std;
int main() {

	student stu = { "张三",18,100};
	//值传递
	printStudent(stu);
	cout << "主函数中 姓名:" << stu.name << " 年龄: " << stu.age << " 分数:" << stu.score << endl;

	cout << endl;

	//地址传递
	printStudent2(&stu);
	cout << "主函数中 姓名:" << stu.name << " 年龄: " << stu.age  << " 分数:" << stu.score << endl;

	return 0;
}

总结:如果不想修改主函数中的数据,用值传递,反之用地址传递

(7) const使用场景

作用:用const来防止误操作

示例:

//学生结构体定义
struct student
{
	//成员列表
	string name;  //姓名
	int age;      //年龄
	int score;    //分数
};

//const使用场景
void printStudent(const student *stu) //加const防止函数体中的误操作
{
	//stu->age = 100; //操作失败,因为加了const修饰
	cout << "姓名:" << stu->name << " 年龄:" << stu->age << " 分数:" << stu->score << endl;

}

#include<iostream>
using namespace std;
int main() {

	student stu = { "张三",18,100 };

	printStudent(&stu);

	return 0;
}

作用:减少值传递时拷贝数据导致的空间浪费,避免引用传递时值被修改。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1060401.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

阿里云服务器免费申请入口_注册阿里云免费领4台服务器

注册阿里云账号&#xff0c;免费领云服务器&#xff0c;最高领取4台云服务器&#xff0c;每月750小时&#xff0c;3个月免费试用时长&#xff0c;可快速搭建网站/小程序&#xff0c;部署开发环境&#xff0c;开发多种企业应用。阿里云百科分享阿里云服务器免费领取入口、免费云…

调度程序以及调度算法的评价指标

1.调度器/调度程序 调度程序决定调度算法&#xff0c;时间片大小 ②&#xff0c;③由调度程序引起&#xff0c;调度程序决定: 1.调度时机 创建新进程进程退出运行进程阻塞I/O中断发生&#xff08;可能唤醒某些阻塞进程)非抢占式调度策略&#xff0c;只有运行进程阻塞或退出…

深度学习笔记_4、CNN卷积神经网络+全连接神经网络解决MNIST数据

1、首先&#xff0c;导入所需的库和模块&#xff0c;包括NumPy、PyTorch、MNIST数据集、数据处理工具、模型层、优化器、损失函数、混淆矩阵、绘图工具以及数据处理工具。 import numpy as np import torch from torchvision.datasets import mnist import torchvision.transf…

leetcode做题笔记160. 相交链表

给你两个单链表的头节点 headA 和 headB &#xff0c;请你找出并返回两个单链表相交的起始节点。如果两个链表不存在相交节点&#xff0c;返回 null 。 图示两个链表在节点 c1 开始相交&#xff1a; 题目数据 保证 整个链式结构中不存在环。 注意&#xff0c;函数返回结果后&…

1300*C. Rumor(并查集贪心)

解析&#xff1a; 并查集&#xff0c;求每个集合的最小费用。 每次合并集合的时候&#xff0c;根节点保存当前集合最小的费用。 #include<bits/stdc.h> using namespace std; #define int long long const int N1e55; int n,m,a[N],p[N],cnt[N]; int find(int x){retur…

如何在springboot2中利用mybatis-plus进行分页查询操作。

1.创建配置mp的配置类 在mp的拦截器中加入分页拦截器 package com.example.config;import com.baomidou.mybatisplus.extension.plugins.MybatisPlusInterceptor; import com.baomidou.mybatisplus.extension.plugins.inner.PaginationInnerInterceptor; import org.springfra…

微信小程序template界面模板导入

我们有些时候 会有一些比较大但并不复杂的界面结构 这个时候 你可以试试这种导入模板的形式 我们在根目录创建一个 template 目录 然后下面创建一个 text文件夹下面创建一个 test.wxml 参考代码如下 <template name"textIndex"><text class "testw&…

微服务技术栈-Nacos配置管理和Feign远程调用

文章目录 前言一、统一配置管理1.添加配置文件2.微服务拉取配置3.配置共享 三、Feign远程调用总结 前言 在上篇文章中介绍了微服务技术栈中Nacos这个组件的概念&#xff0c;Nacos除了可以做注册中心&#xff0c;同样可以做配置管理来使用。同时我们将学习一种新的远程调用方式…

阿里云免费服务器无法领取限制说明

阿里云提供免费服务器供用户申请&#xff0c;但是领取免费服务器是有条件的&#xff0c;并不是有所的阿里云用户均可领取免费云服务器&#xff0c;免费服务器领取条件为&#xff1a;账号从未使用过阿里云服务器的用户&#xff0c;阿里云百科来举例说明免费服务器领取说明&#…

强化学习环境 - robogym - 学习 - 1

强化学习环境 - robogym - 学习 - 1 项目地址 https://github.com/openai/robogym 为什么选择 robogym 自己的项目需要做一些机械臂 table-top 级的多任务操作 robogym 基于 mujoco 搭建&#xff0c;构建了一个仿真机械臂桌面物体操作&#xff08;pick-place、stack、rearr…

System Generator学习——将代码导入System Generator

文章目录 前言一、步骤 1&#xff1a;用 M-Code 建模控制1、引言2、目标3、步骤 二、步骤 2&#xff1a;用 HDL 建模模块1、引言2、目标3、步骤 三、用 C/C 代码建模块1、引言2、目标3、步骤4、第 1 部分&#xff1a;从 Vivado HLS 创建一个系统生成器包5、第 2 部分&#xff1…

《机器学习实战》学习记录-ch2

PS: 个人笔记&#xff0c;建议不看 原书资料&#xff1a;https://github.com/ageron/handson-ml2 2.1数据获取 import pandas as pd data pd.read_csv(r"C:\Users\cyan\Desktop\AI\ML\handson-ml2\datasets\housing\housing.csv")data.head() data.info()<clas…

优先级队列的模拟实现

目录 1. 优先级队列的概念 1.1堆的概念 1.2堆的性质 1.3堆的存储方式 2. 堆的创建 2.1堆的创建代码解析 2.2建堆的时间复杂度 2.3堆的插入 2.4 堆的删除 2.5常见习题 1. 优先级队列的概念 队列是一种先进先出 (FIFO) 的数据结构 &#xff0c;但有些情况下&#xff0c; 操作的数…

Allegro174版本如何关闭模块复用后铜皮自动从动态变成静态操作指导

Allegro174版本如何关闭模块复用后铜皮自动从动态变成静态操作指导 在用Allegro进行PCB设计的时候,模块复用是使用的十分频繁的操作,当Allegro升级到了174 S034版本的时候,当使用模块复用的功能的时候,模块内的铜皮会自动动静转换,大部分情况是不需要的。 如下图 如何关闭…

【再识C进阶4】详细介绍自定义类型——结构体、枚举和联合

学习目标&#xff1a; 在上一篇博客中&#xff0c;我们已经详细地学习了字符分类函数、字符转换函数和内存函数。那这一篇博客和上一篇博客的关系不是那么相连。 这一篇博客主要介绍一下自定义类型&#xff0c;因为在解决实际问题时&#xff0c;由于世界上的因素有很多&#xf…

01.爬虫基础

1、Python爬虫介绍 爬虫的实战性要求很强。爬虫经常需要爬取商业网站或政府网站的内容&#xff0c;而这些网站随时可能进行更新&#xff0c;另外网络原因和网站反爬虫机制也会对爬虫代码演示造成干扰。 1、1 爬虫的用处 网络爬虫&#xff1a;按照一定的规则&#xff0c;自动…

【Java 进阶篇】JDBC 管理事务详解

在数据库操作中&#xff0c;事务是一个非常重要的概念。事务可以确保一系列的数据库操作要么全部成功执行&#xff0c;要么全部失败回滚&#xff0c;以保持数据库的一致性和完整性。在 Java 中&#xff0c;我们可以使用 JDBC 来管理事务。本文将详细介绍 JDBC 管理事务的方法和…

【Java 进阶篇】JDBC 数据库连接池详解

数据库连接池是数据库连接的管理和复用工具&#xff0c;它可以有效地降低数据库连接和断开连接的开销&#xff0c;提高了数据库访问的性能和效率。在 Java 中&#xff0c;JDBC 数据库连接池是一个常见的实现方式&#xff0c;本文将详细介绍 JDBC 数据库连接池的使用和原理。 1…

vs2015 函数声明、定义与引用

10.VS-函数声明、定义和引用 - 简书 简言之&#xff0c;函数先在头文件中被声明&#xff0c;然后在对应cpp文件中实现&#xff08;定义&#xff09;&#xff0c;最后被不同文件的代码调用&#xff08;引用&#xff09;。

集合原理简记

HashMap 无论在构造函数是否指定数组长度&#xff0c;进行的都是延迟初始化 构造函数作用&#xff1a; 阈值&#xff1a;threshold&#xff0c;每次<<1 &#xff0c;数组长度 负载因子 无参构造&#xff1a;设置默认的负载因子 有参&#xff1a;可以指定初始容量或…