竞赛 大数据商城人流数据分析与可视化 - python 大数据分析

news2025/1/4 19:14:31

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于大数据的基站数据分析与可视化

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

课题背景

  • 随着当今个人手机终端的普及,出行群体中手机拥有率和使用率已达到相当高的比例,手机移动网络也基本实现了城乡空间区域的全覆盖。根据手机信号在真实地理空间上的覆盖情况,将手机用户时间序列的手机定位数据,映射至现实的地理空间位置,即可完整、客观地还原出手机用户的现实活动轨迹,从而挖掘得到人口空间分布与活动联系特征信息。移动通信网络的信号覆盖从逻辑上被设计成由若干六边形的基站小区相互邻接而构成的蜂窝网络面状服务区,手机终端总是与其中某一个基站小区保持联系,移动通信网络的控制中心会定期或不定期地主动或被动地记录每个手机终端时间序列的基站小区编号信息。
  • 商圈是现代市场中企业市场活动的空间,最初是站在商品和服务提供者的产地角度提出,后来逐渐扩展到商圈同时也是商品和服务享用者的区域。商圈划分的目的之一是为了研究潜在的顾客的分布以制定适宜的商业对策。

分析方法与过程

初步分析:

  • 手机用户在使用短信业务、通话业务、开关机、正常位置更新、周期位置更新和切入呼叫的时候均产生定位数据,定位数据记录手机用户所处基站的编号、时间和唯一标识用户的EMASI号等。历史定位数据描绘了用户的活动模式,一个基站覆盖的区域可等价于商圈,通过归纳经过基站覆盖范围的人口特征,识别出不同类别的基站范围,即可等同地识别出不同类别的商圈。衡量区域的人口特征可从人流量和人均停留时间的角度进行分析,所以在归纳基站特征时可针对这两个特点进行提取。

总体流程:

在这里插入图片描述

1.数据探索分析

EMASI号为55555的用户在2014年1月1日的定位数据
在这里插入图片描述
在这里插入图片描述

2.数据预处理

数据规约

  1. 网络类型、LOC编号和信令类型这三个属性对于挖掘目标没有用处,故剔除这三个冗余的属性。而衡量用户的停留时间并不需要精确到毫秒级,故可把毫秒这一属性删除。
  2. 把年、月和日合并记为日期,时、分和秒合并记为时间。
    在这里插入图片描述
 import numpy as np  
import pandas as pd  

data=pd.read_excel(‘C://Python//DataAndCode//chapter14//demo//data//business_circle.xls’)  
 

# print(data.head())  

#删除三个冗余属性  
del data[[‘网络类型’,‘LOC编号’,‘信令类型’]]



    #合并年月日
    periods=pd.PeriodIndex(year=data['年'],month=data['月'],day=data['日'],freq='D')
    data['日期']=periods
    time=pd.PeriodIndex(hour=data['时'],minutes=data['分'],seconds=data['秒'],freq='D')
    data['时间']=time
    data['日期']=pd.to_datetime(data['日期'],format='%Y/%m/%d')
    data['时间']=pd.to_datetime(data['时间'],format='%H/%M/%S')



数据变换

假设原始数据所有用户在观测窗口期间L( 天)曾经经过的基站有 N个,用户有 M个,用户 i在 j天在 num1 基站的工作日上班时间停留时间为
weekday_num1,在 num1 基站的凌晨停留时间为night_num1 ,在num1基站的周末停留时间为weekend_num1, 在
num1基站是否停留为 stay_num1 ,设计基站覆盖范围区域的人流特征:
在这里插入图片描述

在这里插入图片描述
由于各个属性的之间的差异较大,为了消除数量级数据带来的影响,在进行聚类前,需要进行离差标准化处理。

 #- _\- coding: utf-8 -_ -  
 #数据标准化到[0,1]  
 import pandas as pd  
  
#参数初始化  
filename = ‘…/data/business_circle.xls’ #原始数据文件  
standardizedfile = ‘…/tmp/standardized.xls’ #标准化后数据保存路径


    data = pd.read_excel(filename, index_col = u'基站编号') #读取数据
    
    data = (data - data.min())/(data.max() - data.min()) #离差标准化
    data = data.reset_index()
    
    data.to_excel(standardizedfile, index = False) #保存结果



在这里插入图片描述

3.构建模型

构建商圈聚类模型

采用层次聚类算法对建模数据进行基于基站数据的商圈聚类,画出谱系聚类图。从图可见,可把聚类类别数取3类。

 #- _\- coding: utf-8 -_ -  
 #谱系聚类图  
import pandas as pd  
  
#参数初始化  
standardizedfile = ‘…/data/standardized.xls’ #标准化后的数据文件  
data = pd.read_excel(standardizedfile, index_col = u’基站编号’) #读取数据




```python
import matplotlib.pyplot as plt
from scipy.cluster.hierarchy import linkage,dendrogram
#这里使用scipy的层次聚类函数

Z = linkage(data, method = 'ward', metric = 'euclidean') #谱系聚类图
P = dendrogram(Z, 0) #画谱系聚类图
plt.show()
```



在这里插入图片描述

模型分析

针对聚类结果按不同类别画出4个特征的折线图。

#- _\- coding: utf-8 -_ - 
#层次聚类算法 
import pandas as pd 

#参数初始化 
standardizedfile = ‘…/data/standardized.xls’ #标准化后的数据文件
k = 3 #聚类数
data = pd.read_excel(standardizedfile, index_col = u’基站编号’) #读取数据

    from sklearn.cluster import AgglomerativeClustering #导入sklearn的层次聚类函数
    model = AgglomerativeClustering(n_clusters = k, linkage = 'ward')
    model.fit(data) #训练模型
    
    #详细输出原始数据及其类别
    r = pd.concat([data, pd.Series(model.labels_, index = data.index)], axis = 1)  #详细输出每个样本对应的类别
    r.columns = list(data.columns) + [u'聚类类别'] #重命名表头
    
    import matplotlib.pyplot as plt
    plt.rcParams['font.sans-serif'] = ['SimHei'] #用来正常显示中文标签
    plt.rcParams['axes.unicode_minus'] = False #用来正常显示负号
    
    style = ['ro-', 'go-', 'bo-']
    xlabels = [u'工作日人均停留时间', u'凌晨人均停留时间', u'周末人均停留时间', u'日均人流量']
    pic_output = '../tmp/type_' #聚类图文件名前缀
    
    for i in range(k): #逐一作图,作出不同样式
      plt.figure()
      tmp = r[r[u'聚类类别'] == i].iloc[:,:4] #提取每一类
      for j in range(len(tmp)):
        plt.plot(range(1, 5), tmp.iloc[j], style[i])
      
      plt.xticks(range(1, 5), xlabels, rotation = 20) #坐标标签
      plt.title(u'商圈类别%s' %(i+1)) #我们计数习惯从1开始
      plt.subplots_adjust(bottom=0.15) #调整底部
      plt.savefig(u'%s%s.png' %(pic_output, i+1)) #保存图片


在这里插入图片描述

对于商圈类别1,日均人流量较大,同时工作日上班时间人均停留时间、凌晨人均停留时间和周末人均停留时间相对较短,该类别基站覆盖的区域类似于商业区

在这里插入图片描述

对于商圈类别2,凌晨人均停留时间和周末人均停留时间相对较长,而工作日上班时间人均停留时间较短,日均人流量较少,该类别基站覆盖的区域类似于住宅区。

在这里插入图片描述

对于商圈类别3,这部分基站覆盖范围的工作日上班时间人均停留时间较长,同时凌晨人均停留时间、周末人均停留时间相对较短,该类别基站覆盖的区域类似于白领上班族的工作区域。

总结

商圈类别2的人流量较少,商圈类别3的人流量一般,而且白领上班族的工作区域一般的人员流动集中在上下班时间和午间吃饭时间,这两类商圈均不利于运营商的促销活动的开展,商圈类别1的人流量大,在这样的商业区有利于进行运营商的促销活动。

最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1059954.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SketchUp Pro 2023 for Mac——打造你的创意之城

SketchUp Pro 2023 for Mac是一款专业级的3D建模软件,为你提供最佳的设计和创意工具。不论你是建筑师、室内设计师,还是爱好者,SketchUp Pro都能满足你对于创意表达的需求。 SketchUp Pro 2023拥有强大而直观的界面,让你轻松绘制…

关于大小端的想法

一、课本上的内容 二、一些想法 之前一直只是做题,不具体了解大小端存在的意义。 应用中,网络字节序常使用大端模式,主机字节序常使用小端模式。 实际上,计算机常使用小端模式是因为小端的加法器比较好做。就比如要做一个 4 …

C++:stl:stack、queue、priority_queue介绍及模拟实现和容量适配器deque介绍

本文主要介绍c中stl的栈、队列和优先级队列并对其模拟实现,对deque进行一定介绍并在栈和队列的模拟实现中使用。 目录 一、stack的介绍和使用 1.stack的介绍 2.stack的使用 3.stack的模拟实现 二、queue的介绍和使用 1.queue的介绍 2.queue的使用 3.queue的…

Docker-mysql,redis安装

安装MySQL 下载MySQL镜像 终端运行命令 docker pull mysql:8.0.29镜像下载完成后,需要配置持久化数据到本地 这是mysql的配置文件和存储数据用的目录 切换到终端,输入命令,第一次启动MySQL容器 docker run --restartalways --name mysq…

ROS(0)命令及学习资源汇总

ROS安装命令 参考:Ubuntu20.04.4安装ROS Noetic详细教程 - 知乎 安装C和Python3 sudo apt-get install g sudo apt-get install python3 ROS运行小海龟仿真器 roscore确定ROS是否运行成功rosrun turtlesim turtlesim_node运行小海龟仿真器rosrun turtlesim turtle_…

unordered_map和unordered_set模拟实现

unordered系列的关联式容器之所以效率比较高,是因为其底层使用了哈希结构。 一、哈希 1.1哈希概念 构造一种存储结构,通过某种函数(hashFunc)使元素的存储位置与它的关键码之间能够建立一一映射的关系,那么在查找时通过该函数可以很快找到…

十二、Django之模板的继承+用户列表

模板的继承 新建layout.html&#xff1a; {% load static %} <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title><link rel"stylesheet" href"{% static plugins…

【功能设计】应用集成平台token授权接入

文章目录 IPass应用集成平台token授权接入1.接入流程图&#xff1a;2.功能设计&#xff1a;3.测试要点&#xff1a; IPass应用集成平台token授权接入 1.接入流程图&#xff1a; 功能业务流程描述&#xff1a; a.调用方从redis获取应用集成平台授权token b.如果没有拿到&…

[linux] SFTP文件传输基本命令 --- xshell 直接上传文件

2.sftp - 上传文件&#xff1a;如果上传/下载的是文件夹, 在put/get命令后加上-r参数即可。 上传文件&#xff1a; 把本地服务器的/www/wwwroot目录下面的study.log文件上传到远程服务器的/www/server目录下。 sftp> lcd /www/wwwroot sftp> put study.log /www/server…

数据结构与算法-顺序表

数据结构与算法 &#x1f388;1.线性表&#x1f50e;1.1基本操作&#x1f50e;1.2线性表的存储结构 &#x1f388;2.线性表的顺序表示和实现&#x1f50e;2.1线性表的顺序存储表示&#x1f52d;2.1.1静态顺序表&#x1f52d;2.1.2动态顺序表 &#x1f50e;2.2顺序表基本操作的实…

C/C++/VS2022/指针/数组 调试出现debug

这个情况就很难受&#xff0c;编译没错&#xff0c;但是运行出现问题了&#xff0c;如果点击中止&#xff08;重试、忽略&#xff09;下一次运行还是会出现&#xff0c;看了显示的大致意思是在数组arry上出现了什么错误&#xff0c;经过检查发现&#xff0c;原来是数组在数入时…

李沐深度学习记录2:10多层感知机

一.简要知识记录 x.numel()&#xff1a;看向量或矩阵里元素个数 A.sum()&#xff1a;向量或矩阵求和&#xff0c;axis参数可对某维度求和&#xff0c;keepdims参数设置是否保持维度不变 A.cumsum&#xff1a;axis参数设置沿某一维度计算矩阵累计和x*y:向量的按元素乘法 torch.…

【Golang】并发

并发 有人把Go语言比作 21 世纪的C语言 第一是因为Go语言设计简单 第二则是因为 21 世纪最重要的就是并发程序设计&#xff0c;而 Go 从语言层面就支持并发。同时实现了自动垃圾回收机制 先来了解一些概念&#xff1a; 进程/线程 进程是程序在操作系统中的一次执行过程&#…

MySQL锁的详细讲解(全局锁、表级锁、行级锁)

# 概述 # 全局锁 # 表级锁 表锁 元数据锁 假如有客户端1、客户端2&#xff0c; 客户端1&#xff0c;执行begin命令开启了事务 客户端1没有执行读写语句&#xff0c;这时&#xff0c;客户端执行查看元数据锁的命令&#xff0c;查看到没有加到元数据锁当客户端1执行select读操作…

Ubuntu使用cmake和vscode开发自己的项目

创建文件夹 mkdir my_proj 继续创建include 和 src文件夹&#xff0c;形成如下的目录结构 用vscode打开项目 创建add.h #ifndef ADD_H #define ADD_Hint add(int numA, int numB);#endif add.cpp #include "add.h"int add(int numA, int numB) {return numA nu…

RDP协议流程详解(一)Connection Initiation阶段

Connetction Initiation是RDP连接的第一个阶段&#xff0c;具体包含两个消息RDP Negotiation Request和RDP Negotiation Response&#xff0c;下面结合协议数据包详细分析。 &#xff08;1&#xff09;RDP Negotiation Request 从数据包可以清晰看到此时的协议栈依次是TCP-TPKT…

波奇学C++:map和set

Set的底层是红黑树&#xff0c;红黑树是一种搜索二叉树。 Set的优势在于搜索速度上&#xff0c;搜索key值的时间赋值度是logn。 Set可以实现去重排序的操作&#xff0c;已有的值不再重复插入&#xff0c;插入的数据自动排序 和其他数据结构一样set支出insert,erase,find等操…

ctfshow web入门 php特性 web126-web130

1.web126 和前面一样的 payload&#xff1a; get: a1fl0gflag_give_me post: CTF_SHOW&CTF[SHOW.COM&funparse_str($a[1]) 或 get: ?$fl0gflag_give_me post:CTF_SHOW&CTF[SHOW.COM&funassert($a[0]) assert($a[0]) 是把fl0g赋值为flag_give_me $a[0]是当前…

​【Java】面向对象程序设计 课程笔记 面向对象基础

&#x1f680;Write In Front&#x1f680; &#x1f4dd;个人主页&#xff1a;令夏二十三 &#x1f381;欢迎各位→点赞&#x1f44d; 收藏⭐️ 留言&#x1f4dd; &#x1f4e3;系列专栏&#xff1a;Java &#x1f4ac;总结&#xff1a;希望你看完之后&#xff0c;能对你有…

数仓使用SQL脚本在数据库中添加初始数据示例

文章目录 需要在虚拟机上开启数据库 点击确定后&#xff0c;可以点开这个连接&#xff0c;查看数据库信息 运行 init_mysql.sql 创建mall 数据库 -- 设置sql_mode set sql_mode NO_ENGINE_SUBSTITUTION,STRICT_TRANS_TABLES;-- 创建数据库mall create database mall;-- 切换数…