目录
1. Dynamic dimensions required for input: input, but no shapes were provided. Automatically overriding
2. sampleMNIST.obj : error LNK2019: 无法解析的外部符号 cudaStreamCreate
3. Assertion failed: (smVersion < SM_VERSION_A100) && “SM version not supported in this NVRTC version“
1. Dynamic dimensions required for input: input, but no shapes were provided. Automatically overriding
问题:pth转onnx时设置了动态维度Dynamic dimensions,如下所示
#
# SPDX-FileCopyrightText: Copyright (c) 1993-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: Apache-2.0
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
from PIL import Image
from io import BytesIO
import requests
output_image="input.ppm"
# Read sample image input and save it in ppm format
print("Exporting ppm image {}".format(output_image))
response = requests.get("https://pytorch.org/assets/images/deeplab1.png")
with Image.open(BytesIO(response.content)) as img:
ppm = Image.new("RGB", img.size, (255, 255, 255))
ppm.paste(img, mask=img.split()[3])
ppm.save(output_image)
import torch
import torch.nn as nn
output_onnx="fcn-resnet101.onnx"
# FC-ResNet101 pretrained model from torch-hub extended with argmax layer
class FCN_ResNet101(nn.Module):
def __init__(self):
super(FCN_ResNet101, self).__init__()
self.model = torch.hub.load('pytorch/vision:v0.6.0', 'fcn_resnet101', pretrained=True)
def forward(self, inputs):
x = self.model(inputs)['out']
x = x.argmax(1, keepdims=True)
return x
model = FCN_ResNet101()
model.eval()
# Generate input tensor with random values
input_tensor = torch.rand(4, 3, 224, 224)
# Export torch model to ONNX
print("Exporting ONNX model {}".format(output_onnx))
torch.onnx.export(model, input_tensor, output_onnx,
opset_version=12,
do_constant_folding=True,
input_names=["input"],
output_names=["output"],
dynamic_axes={"input": {0: "batch", 2: "height", 3: "width"},
"output": {0: "batch", 2: "height", 3: "width"}},
verbose=False)
但是,onnx转trt时,必须指定推理维度,否则会报warning:
[W] Dynamic dimensions required for input: input, but no shapes were provided. Automatically overriding shape to: 1x3x1x1
输入维度变成了1x3x1x1,显然不对。
解决办法:
需指定维度:
trtexec.exe --onnx=E:\code\python\TensorRT-main\quickstart\SemanticSegmentation\fcn-resnet101.onnx --minShapes=input:1x3x1026x1282 --optShapes=input:1x3x1026x1282 --maxShapes=input:4x3x1026x1282 --workspace=4096 --saveEngine=E:\code\python\TensorRT-main\quickstart\SemanticSegmentation\fcn-resnet101.engine
2. sampleMNIST.obj : error LNK2019: 无法解析的外部符号 cudaStreamCreate
问题描述
已启动生成…
1>------ 已启动生成: 项目: tensorRTTest, 配置: Debug x64 ------
1>sampleMNIST.obj : error LNK2019: 无法解析的外部符号 cudaStreamCreate,函数 "void __cdecl doInference(class nvinfer1::IExecutionContext &,float *,float *,int)" (?doInference@@YAXAEAVIExecutionContext@nvinfer1@@PEAM1H@Z) 中引用了该符号
1>sampleMNIST.obj : error LNK2019: 无法解析的外部符号 cudaStreamDestroy,函数 "void __cdecl doInference(class nvinfer1::IExecutionContext &,float *,float *,int)" (?doInference@@YAXAEAVIExecutionContext@nvinfer1@@PEAM1H@Z) 中引用了该符号
1>sampleMNIST.obj : error LNK2019: 无法解析的外部符号 cudaStreamSynchronize,函数 "void __cdecl doInference(class nvinfer1::IExecutionContext &,float *,float *,int)" (?doInference@@YAXAEAVIExecutionContext@nvinfer1@@PEAM1H@Z) 中引用了该符号
1>sampleMNIST.obj : error LNK2019: 无法解析的外部符号 cudaMalloc,函数 "void __cdecl doInference(class nvinfer1::IExecutionContext &,float *,float *,int)" (?doInference@@YAXAEAVIExecutionContext@nvinfer1@@PEAM1H@Z) 中引用了该符号
1>sampleMNIST.obj : error LNK2019: 无法解析的外部符号 cudaFree,函数 "void __cdecl doInference(class nvinfer1::IExecutionContext &,float *,float *,int)" (?doInference@@YAXAEAVIExecutionContext@nvinfer1@@PEAM1H@Z) 中引用了该符号
1>sampleMNIST.obj : error LNK2019: 无法解析的外部符号 cudaMemcpyAsync,函数 "void __cdecl doInference(class nvinfer1::IExecutionContext &,float *,float *,int)" (?doInference@@YAXAEAVIExecutionContext@nvinfer1@@PEAM1H@Z) 中引用了该符号
1>D:\code\Cplusplus\tensorRTTest\x64\Debug\tensorRTTest.exe : fatal error LNK1120: 6 个无法解析的外部命令
1>已完成生成项目“tensorRTTest.vcxproj”的操作 - 失败。
========== 生成: 成功 0 个,失败 1 个,最新 0 个,跳过 0 个 ==========
一般这种“无法解析的外部符号”,多半是缺少lib库。这里是缺少cudart.lib和cuda.lib,在vs2019链接器上加上,问题解决。
myelin64_1.lib
nvinfer.lib
nvinfer_plugin.lib
nvonnxparser.lib
nvparsers.lib
cudart.lib
cuda.lib
3. Assertion failed: (smVersion < SM_VERSION_A100) && “SM version not supported in this NVRTC version“
问题描述:
以为是环境:
window10
TensorRT-7.0.0.11
cuda 10.2
cudnn 8.0.3
刚开始以为是TensorRT版本太低,7.0换成7.2.3,还是报一样的错误。
即环境
window10
TensorRT-7.2.3
cuda 10.2
cudnn 8.0.3
也不行。
升级cuda版本,由cuda10.2升级到11.0。报新的错误信息:
C:\source\rtSafe\cuda\cudaConvolutionRunner.cpp (483) - Cudnn Error in nvinfer1::rt::cuda::CudnnConvolutionRunner::executeConv
从错误信息看是cudnn的问题。
解决办法:可能是显卡太高端了,全面升级
tensorRT 7.2.3 (TensorRT-7.2.3.4.Windows10.x86_64.cuda-11.1.cudnn8.1.zip)
cuda11.1 (cuda_11.1.0_456.43_win10.exe)
cudnn8.1 (cudnn-11.2-windows-x64-v8.1.0.77.zip)
问题解决