Redis主从复制、哨兵、cluster集群

news2024/11/22 5:57:29

目录

Redis 主从复制

主从复制的作用

主从复制流程

搭建Redis 主从复制

实验环境

所有主机安装redis

 修改 Redis 配置文件(Master节点操作)

修改 Redis 配置文件(Slave节点操作)

验证主从效果

Redis 哨兵模式

哨兵模式的作用

哨兵结构

故障转移机制

主节点的选举

搭建Redis 哨兵模式

修改 Redis 哨兵模式的配置文件(所有节点操作)

启动哨兵模式

查看哨兵信息

故障模拟

Redis 群集模式

集群的作用

Redis集群的数据分片

Redis集群的主从复制模型

搭建Redis 群集模式

开启群集功能

启动redis节点

 启动集群

测试群集


Redis 主从复制

主从复制,是指将一台Redis服务器的数据,复制到其他的Redis服务器。前者称为主节点(Master),后者称为从节点(Slave);数据的复制是单向的,只能由主节点到从节点。

默认情况下,每台Redis服务器都是主节点;且一个主节点可以有多个从节点(或没有从节点),但一个从节点只能有一个主节点。

主从复制的作用

●数据冗余:主从复制实现了数据的热备份,是持久化之外的一种数据冗余方式。
●故障恢复:当主节点出现问题时,可以由从节点提供服务,实现快速的故障恢复;实际上是一种服务的冗余。
●负载均衡:在主从复制的基础上,配合读写分离,可以由主节点提供写服务,由从节点提供读服务(即写Redis数据时应用连接主节点,读Redis数据时应用连接从节点),分担服务器负载;尤其是在写少读多的场景下,通过多个从节点分担读负载,可以大大提高Redis服务器的并发量。
●高可用基石:除了上述作用以外,主从复制还是哨兵和集群能够实施的基础,因此说主从复制是Redis高可用的基础。

主从复制流程

(1)若启动一个Slave机器进程,则它会向Master机器发送一个“sync command”命令,请求同步连接。
(2)无论是第一次连接还是重新连接,Master机器都会启动一个后台进程,将数据快照保存到数据文件中(执行rdb操作),同时Master还会记录修改数据的所有命令并缓存在数据文件中。
(3)后台进程完成缓存操作之后,Master机器就会向Slave机器发送数据文件,Slave端机器将数据文件保存到硬盘上,然后将其加载到内存中,接着Master机器就会将修改数据的所有操作一并发送给Slave端机器。若Slave出现故障导致宕机,则恢复正常后会自动重新连接。
(4)Master机器收到Slave端机器的连接后,将其完整的数据文件发送给Slave端机器,如果Master同时收到多个Slave发来的同步请求,则Master会在后台启动一个进程以保存数据文件,然后将其发送给所有的Slave端机器,确保所有的Slave端机器都正常

搭建Redis 主从复制

实验环境

master:192.168.142.20

slave1:192.168.142.40

slave2:192.168.142.50

所有主机安装redis
//环境准备
systemctl stop firewalld
systemctl disable firewalld
setenforce 0
sed -i 's/enforcing/disabled/' /etc/selinux/config
 
#修改内核参数
vim /etc/sysctl.conf
vm.overcommit_memory = 1
net.core.somaxconn = 2048
 
sysctl -p
//安装redis
yum install -y gcc gcc-c++ make
 
tar zxvf /opt/redis-7.0.9.tar.gz -C /opt/
cd /opt/redis-7.0.9
make
make PREFIX=/usr/local/redis install
#由于Redis源码包中直接提供了 Makefile 文件,所以在解压完软件包后,不用先执行 ./configure 进行配置,可直接执行 make 与 make install 命令进行安装。
 
#创建redis工作目录
mkdir /usr/local/redis/{conf,log,data}
 
cp /opt/redis-7.0.9/redis.conf /usr/local/redis/conf/
 
useradd -M -s /sbin/nologin redis
chown -R redis.redis /usr/local/redis/
 
#环境变量
vim /etc/profile 
PATH=$PATH:/usr/local/redis/bin		#增加一行
 
source /etc/profile
//定义systemd服务管理脚本
vim /usr/lib/systemd/system/redis-server.service
[Unit]
Description=Redis Server
After=network.target
 
[Service]
User=redis
Group=redis
Type=forking
TimeoutSec=0
PIDFile=/usr/local/redis/log/redis_6379.pid
ExecStart=/usr/local/redis/bin/redis-server /usr/local/redis/conf/redis.conf
ExecReload=/bin/kill -s HUP $MAINPID
ExecStop=/bin/kill -s QUIT $MAINPID
PrivateTmp=true
 
[Install]
WantedBy=multi-user.target
 修改 Redis 配置文件(Master节点操作)
vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass abc123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOF
 
 
systemctl restart redis-server.service
修改 Redis 配置文件(Slave节点操作)
​
vim /usr/local/redis/conf/redis.conf
bind 0.0.0.0									#87行,修改监听地址为0.0.0.0
protected-mode no								#111行,将本机访问保护模式设置no
port 6379										#138行,Redis默认的监听6379端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6379.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6379.log"	#354行,指定日志文件
dir /usr/local/redis/data						#504行,指定持久化文件所在目录
#requirepass abc123								#1037行,可选,设置redis密码
appendonly yes									#1380行,开启AOF
replicaof 192.168.142.20 6379					#528行,指定要同步的Master节点IP和端口
#masterauth abc123								#535行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
 
 
systemctl restart redis-server.service
 
​
验证主从效果
在Master节点上看日志:
tail -f /usr/local/redis/log/redis_6379.log 
Replica 192.168.80.11:6379 asks for synchronization
Replica 192.168.80.12:6379 asks for synchronization
Synchronization with replica 192.168.80.11:6379 succeeded
Synchronization with replica 192.168.80.12:6379 succeeded
 
在Master节点上验证从节点:
redis-cli info replication
# Replication
role:master
connected_slaves:2
slave0:ip=192.168.80.11,port=6379,state=online,offset=1246,lag=0
slave1:ip=192.168.80.12,port=6379,state=online,offset=1246,lag=1

Redis 哨兵模式

主从切换技术的方法是:当服务器宕机后,需要手动一台从机切换为主机,这需要人工干预,不仅费时费力而且还会造成一段时间内服务不可用。为了解决主从复制的缺点,就有了哨兵机制。

哨兵的核心功能:在主从复制的基础上,哨兵引入了主节点的自动故障转移。

哨兵模式的作用

●监控:哨兵会不断地检查主节点和从节点是否运作正常。

●自动故障转移:当主节点不能正常工作时,哨兵会开始自动故障转移操作,它会将失效主节点的其中一个从节点升级为新的主节点,并让其它从节点改为复制新的主节点。

●通知(提醒):哨兵可以将故障转移的结果发送给客户端。

哨兵结构

哨兵结构由两部分组成,哨兵节点和数据节点:
●哨兵节点:哨兵系统由一个或多个哨兵节点组成,哨兵节点是特殊的redis节点,不存储数据。
●数据节点:主节点和从节点都是数据节点。

故障转移机制

1.由哨兵节点定期监控发现主节点是否出现了故障
每个哨兵节点每隔1秒会向主节点、从节点及其它哨兵节点发送一次ping命令做一次心跳检测。如果主节点在一定时间范围内不回复或者是回复一个错误消息,那么这个哨兵就会认为这个主节点主观下线了(单方面的)。当超过半数哨兵节点认为该主节点主观下线了,这样就客观下线了。

2.当主节点出现故障,此时哨兵节点会通过Raft算法(选举算法)实现选举机制共同选举出一个哨兵节点为leader,来负责处理主节点的故障转移和通知。所以整个运行哨兵的集群的数量不得少于3个节点。

3.由leader哨兵节点执行故障转移,过程如下:
●将某一个从节点升级为新的主节点,让其它从节点指向新的主节点;
●若原主节点恢复也变成从节点,并指向新的主节点;
●通知客户端主节点已经更换。

需要特别注意的是,客观下线是主节点才有的概念;如果从节点和哨兵节点发生故障,被哨兵主观下线后,不会再有后续的客观下线和故障转移操作。

主节点的选举

1.过滤掉不健康的(已下线的),没有回复哨兵 ping 响应的从节点。
2.选择配置文件中从节点优先级配置最高的。(replica-priority,默认值为100)
3.选择复制偏移量最大,也就是复制最完整的从节点。

哨兵的启动依赖于主从模式,所以须把主从模式安装好的情况下再去做哨兵模式
 

搭建Redis 哨兵模式

Master节点:192.168.142.20
Slave1节点:192.168.142.50
Slave2节点:192.168.142.60
 
systemctl stop firewalld
setenforce 0
修改 Redis 哨兵模式的配置文件(所有节点操作)
cp /opt/redis-7.0.9/sentinel.conf /usr/local/redis/conf/
chown redis.redis /usr/local/redis/conf/sentinel.conf

vim /usr/local/redis/conf/sentinel.conf
protected-mode no									#6行,关闭保护模式
port 26379											#10行,Redis哨兵默认的监听端口
daemonize yes										#15行,指定sentinel为后台启动
pidfile /usr/local/redis/log/redis-sentinel.pid		#20行,指定 PID 文件
logfile "/usr/local/redis/log/sentinel.log"			#25行,指定日志存放路径
dir /usr/local/redis/data							#54行,指定数据库存放路径
sentinel monitor mymaster 192.168.80.10 6379 2		#73行,修改 指定该哨兵节点监控192.168.80.10:6379这个主节点,该主节点的名称是mymaster,最后的2的含义与主节点的故障判定有关:至少需要2个哨兵节点同意,才能判定主节点故障并进行故障转移
#sentinel auth-pass mymaster abc123					#76行,可选,指定Master节点的密码,仅在Master节点设置了requirepass
sentinel down-after-milliseconds mymaster 3000		#114行,判定服务器down掉的时间周期,默认30000毫秒(30秒)
sentinel failover-timeout mymaster 180000			#214行,同一个sentinel对同一个master两次failover之间的间隔时间(180秒)
启动哨兵模式
先启master,再启slave
cd /usr/local/redis/conf/
redis-sentinel sentinel.conf &
查看哨兵信息
redis-cli -p 26379 info Sentinel
# Sentinel
sentinel_masters:1
sentinel_tilt:0
sentinel_running_scripts:0
sentinel_scripts_queue_length:0
sentinel_simulate_failure_flags:0
master0:name=mymaster,status=ok,address=192.168.80.10:6379,slaves=2,sentinels=3
故障模拟

查看redis-server进程号

杀死 Master 节点上redis-server的进程号

kill -9 63054

验证结果

redis-cli -p 26379 INFO Sentinel

Redis 群集模式

集群,即Redis Cluster,是Redis 3.0开始引入的分布式存储方案。

集群由多组节点(Node)组成,Redis的数据分布在这些节点中。集群中的节点分为主节点和从节点:只有主节点负责读写请求和集群信息的维护;从节点只进行主节点数据和状态信息的复制。

集群的作用

(1)数据分区:数据分区(或称数据分片)是集群最核心的功能。
集群将数据分散到多个节点,一方面突破了Redis单机内存大小的限制,存储容量大大增加;另一方面每个主节点都可以对外提供读服务和写服务,大大提高了集群的响应能力。
Redis单机内存大小受限问题,在介绍持久化和主从复制时都有提及;例如,如果单机内存太大,bgsave和bgrewriteaof的fork操作可能导致主进程阻塞,主从环境下主机切换时可能导致从节点长时间无法提供服务,全量复制阶段主节点的复制缓冲区可能溢出。

(2)高可用:集群支持主从复制和主节点的自动故障转移(与哨兵类似);当任一节点发生故障时,集群仍然可以对外提供服务。

Redis集群的数据分片

Redis集群引入了哈希槽的概念
Redis集群有16384个哈希槽(编号0-16383)
集群的每组节点负责一部分哈希槽
每个Key通过CRC16校验后对16384取余来决定放置哪个哈希槽,通过这个值,去找到对应的插槽所对应的节点,然后直接自动跳转到这个对应的节点上进行存取操作

#以3个节点组成的集群为例:
节点A包含0到5460号哈希槽
节点B包含5461到10922号哈希槽
节点C包含10923到16383号哈希槽

Redis集群的主从复制模型

集群中具有A、B、C三个节点,如果节点B失败了,整个集群就会因缺少5461-10922这个范围的槽而不可以用。
为每个节点添加一个从节点A1、B1、C1整个集群便有三个Master节点和三个slave节点组成,在节点B失败后,集群选举B1位为的主节点继续服务。当B和B1都失败后,集群将不可用。

搭建Redis 群集模式

redis的集群一般需要6个节点,3主3从。方便起见,这里所有节点在同一台服务器上模拟:
以端口号进行区分:3个主节点端口号:6001/6002/6003,对应的从节点端口号:6004/6005/6006

cd /usr/local/redis/
mkdir -p redis-cluster/redis600{1..6}
 
for i in {1..6}
do
cp /opt/redis-7.0.9/redis.conf /usr/local/redis/redis-cluster/redis600$i
cp /opt/redis-7.0.9/src/redis-cli /opt/redis-7.0.9/src/redis-server /usr/local/redis/redis-cluster/redis600$i
done
开启群集功能
#其他5个文件夹的配置文件以此类推修改,注意6个端口都要不一样。
cd /usr/local/redis/redis-cluster/redis6001
vim redis.conf
#bind 127.0.0.1									#87行,注释掉bind项,默认监听所有网卡
protected-mode no								#111行,关闭保护模式
port 6001										#138行,修改redis监听端口
daemonize yes									#309行,设置为守护进程,后台启动
pidfile /usr/local/redis/log/redis_6001.pid		#341行,指定 PID 文件
logfile "/usr/local/redis/log/redis_6001.log"	#354行,指定日志文件
dir ./											#504行,指定持久化文件所在目录
appendonly yes									#1379行,开启AOF
cluster-enabled yes								#1576行,取消注释,开启群集功能
cluster-config-file nodes-6001.conf				#1584行,取消注释,群集名称文件设置
cluster-node-timeout 15000						#1590行,取消注释群集超时时间设置

另外的5个节点服务器,他们的配置是一样的,注意修改端口号,PID文件,日志文件,群集名称文件

启动redis节点
分别进入那六个文件夹,执行命令:redis-server redis.conf ,来启动redis节点
cd /usr/local/redis/redis-cluster/redis6001
redis-server redis.conf
 
for d in {1..6}
do
cd /usr/local/redis/redis-cluster/redis600$d
./redis-server redis.conf
done
 
ps -ef | grep redis
 启动集群
redis-cli --cluster create 127.0.0.1:6001 127.0.0.1:6002 127.0.0.1:6003 127.0.0.1:6004 127.0.0.1:6005 127.0.0.1:6006 --cluster-replicas 1
 
#六个实例分为三组,每组一主一从,前面的做主节点,后面的做从节点。下面交互的时候 需要输入 yes 才可以创建。
--replicas 1 表示每个主节点有1个从节点。
测试群集
redis-cli -p 6001 -c					#加-c参数,节点之间就可以互相跳转
127.0.0.1:6001> cluster slots			#查看节点的哈希槽编号范围
1) 1) (integer) 5461
   2) (integer) 10922									#哈希槽编号范围
   3) 1) "127.0.0.1"
      2) (integer) 6003									#主节点IP和端口号
      3) "fdca661922216dd69a63a7c9d3c4540cd6baef44"
   4) 1) "127.0.0.1"
      2) (integer) 6004									#从节点IP和端口号
      3) "a2c0c32aff0f38980accd2b63d6d952812e44740"
2) 1) (integer) 0
   2) (integer) 5460
   3) 1) "127.0.0.1"
      2) (integer) 6001
      3) "0e5873747a2e26bdc935bc76c2bafb19d0a54b11"
   4) 1) "127.0.0.1"
      2) (integer) 6006
      3) "8842ef5584a85005e135fd0ee59e5a0d67b0cf8e"
3) 1) (integer) 10923
   2) (integer) 16383
   3) 1) "127.0.0.1"
      2) (integer) 6002
      3) "816ddaa3d1469540b2ffbcaaf9aa867646846b30"
   4) 1) "127.0.0.1"
      2) (integer) 6005
      3) "f847077bfe6722466e96178ae8cbb09dc8b4d5eb"
127.0.0.1:6001> set name zhangsan
-> Redirected to slot [5798] located at 127.0.0.1:6003
OK
 
127.0.0.1:6001> cluster keyslot name					#查看name键的槽编号
 
redis-cli -p 6004 -c
127.0.0.1:6004> keys *							#对应的slave节点也有这条数据,但是别的节点没有
1) "name"
 
 
redis-cli -p 6001 -c cluster nodes

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1057705.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【DRAM存储器十】SDRAM介绍-刷新

👉个人主页:highman110 👉作者简介:一名硬件工程师,持续学习,不断记录,保持思考,输出干货内容 参考资料:《镁光SDRAM数据手册》、《PC SDRAM specification》 从前面的…

2023年中国医疗传感器行业现状分析:市场国有化率低[图]

传感器是对物理刺激(如热、光、声、压力、磁或特定的运动)作出反应并传送产生的脉冲(如用于测量或操作控制)的装置。传感器一般由敏感元件、转换元件和转换电路组成。 医疗传感器分类 资料来源:共研产业咨询&#xff…

基于SSM的奶茶店管理系统

末尾获取源码 开发语言:Java Java开发工具:JDK1.8 后端框架:SSM 前端:采用JSP技术开发 数据库:MySQL5.7和Navicat管理工具结合 服务器:Tomcat8.5 开发软件:IDEA / Eclipse 是否Maven项目&#x…

世界前沿技术发展报告2023《世界航天技术发展报告》(二)卫星技术

(二)卫星技术 1.概述2. 通信卫星2.1 美国太空发展局推进“国防太空体系架构”,持续部署“传输层”卫星2.2 美国军方在近地轨道成功演示验证星间激光通信2.3 DARPA启动“天基自适应通信节点”项目,为增强太空通信在轨互操作能力提供…

AVL树的实现及原理

目录 AVL树的由来 AVL的实现原理 左单旋 右单旋 先左后右 先右后左 总结 AVL树的由来 查找,无论在什么情况下都与我们息息相关。在我们学习数组阶段学习到了线性查找,可是它的效率很低下,又演变出来了二分查找,它的效率非常…

MySQL进阶_2.索引的设计原则

文章目录 第一章、索引简介1.1 索引定义1.2 使用索引的目的1.3 B树结构 第二章 常见索引概念2.1 聚簇索引2.2 二级索引(辅助索引、非聚簇索引)2.3 比较2.4 联合索引2.5 总结2.6 索引的代价 第三章 索引的分类和创建3.1 索引分类3.2 创建和删除索引 第四章…

集群-Nacos-2.2.3、Nginx-1.24.0集群配置

Nacos集群 高可用 Nginx 集群Nacos 集群(至少三个实例)高可用数据库集群(取代 Nacos 内嵌数据库) Nacos 集群搭建 集群使用版本: Nginx 1.24.0 Nacos 2.2.3 服务器IP服务器版本Nginx18.18.18.40CentOS-7.9MySQL18.18.…

2024免费的硬盘数据恢复软件有哪些?

在当今信息化的社会,数据成为了人们日常工作和生活的重要组成部分。不幸的是,数据丢失的问题也越来越普遍。硬盘数据恢复软件因此而产生,为那些不幸丢失数据的人们提供了救赎。在本文中,我们将介绍十大硬盘数据恢复软件。 一、Rec…

Mind Map:大语言模型中的知识图谱提示激发思维图10.1+10.2

知识图谱提示激发思维图 摘要介绍相关工作方法第一步:证据图挖掘第二步:证据图聚合第三步:LLM Mind Map推理 实验实验设置医学问答长对话问题使用KG的部分知识生成深入分析 总结 摘要 LLM通常在吸收新知识的能力、generation of hallucinati…

【STM32基础 CubeMX】ADC的基础使用

文章目录 前言一、ADC是什么二、使用CubeMX配置ADC三、代码分析3.1 cubemx生成代码分析3.2 ADC HAL库函数HAL_ADC_Start_IT开启adc中断函数获取ADC值 四、示例代码:获取光敏电阻的值总结 前言 在嵌入式系统开发中,STM32系列微控制器是广泛应用的一种硬件…

如何查看postgresql中的数据库大小?

你可以使用以下命令来查看PostgreSQL数据库的大小: SELECT pg_database.datname as "database_name", pg_size_pretty(pg_database_size(pg_database.datname)) AS size_in_mb FROM pg_database ORDER by size_in_mb DESC;这将返回一个表格&#xff0…

Mysql以key-val存储、正常存储的区别

场景 你作为一个服务端工程师,假设产品要求设计这么一个页面,页面上包含很多模块,每个模块都可以单独进行变更,有些模块是富文本。 实现方式有很多,我们来聊比较常用的两种,看看mysql的表如何设计。 第一…

【算法训练-贪心算法 一】买卖股票的最佳时机II

废话不多说,喊一句号子鼓励自己:程序员永不失业,程序员走向架构!本篇Blog的主题是【贪心算法】,使用【数组】这个基本的数据结构来实现,这个高频题的站点是:CodeTop,筛选条件为&…

GROMACS Tutorial 5: Protein-Ligand Complex 中文实战教程

GROMACS Tutorial 5: Protein-Ligand Complex 中文实战教程 前言系统环境特别强调一、预处理阶段1.1 蛋白质配体分离以及除水操作1.2 选择力场识别JZ4配体1.2.1 使用在线力场解析1.2.2 使用官方推荐力场CHARMM36解析 1.3 蛋白的top文件准备1.4 配体的top文件准备1.5 使用CgenFF…

【Java每日一题】— —第十九题:用二维数组存放九九乘法表,并将其输出。(2023.10.03)

🕸️Hollow,各位小伙伴,今天我们要做的是第十九题。 🎯问题: 用二维数组存放九九乘法表,并将其输出。 测试结果如下: 🎯 答案: System.out.println("九九乘法表如…

Stable Diffusion云服务器部署完整版教程

Stable Diffusion云服务器部署完整版教程 2023年07月04日 22:30 3607浏览 18喜欢 22评论 <span class"bili-avatar-icon bili-avatar-right-icon "></span> </div>薯片_AI 粉丝&#xff1a; 1513 文章&#xff1a; 1 设置分组取消关注 已关注 …

CRMEB商城源码开源标准版v5.2.0+后端+前端uni-app开源包安装教程

CRMEB打通版是一款全开源支持商用的PHP多语言商城系统,系统支持微信公众号端、微信小程序端、H5端、PC端多端账号同步&#xff0c;可快速打包生成APP&#xff1b; 播播资源整合格安装测试了CRMEB商城系统功能非常全&#xff0c;官方的文档教程也非常多&#xff0c;包括如何打包…

linux 笔记 安装 anaconda

1 找到anaconda 安装包 Free Download | Anaconda 2 在linux环境中安装对应安装包 3 安装完毕后查看是否安装好 发现不行&#xff0c;需要配置环境变量 4 配置环境变量 vim /etc/profile使用这个&#xff0c;发现对应的文件是只读文件 sudo vim /etc/profile在最下面加一…

【数据结构与算法】- 数组

数组 1.1 数组的定义1.2 数组的创建1.3 数组在内存中的情况2.1 初始化数组2.2 插入元素2.3 删除元素2.4 读取元素2.5 遍历数组 1.1 数组的定义 数组中的是在内存中是连续存储的&#xff0c;内存是由一个个内存单元组成的&#xff0c;每一个内存单元都有自己的地址&#xff0c;…

【匠心打造】从0打造uniapp 可视化拖拽设计 c_o 第十篇

一、click one for uniapp置顶&#xff1a; 全部免费开源 (你商业用途也没关系&#xff0c;不过可以告诉我公司名或者项目名&#xff0c;放在官网上好看点。哈哈-_-) 二、写在之前 距离上一篇更新已经大约4个月了&#xff0c;公司的事情&#xff0c;自己的一些琐事一直没时间…