levelDB引擎

news2025/1/14 18:15:07

一、背景

1.1、影响磁盘性能的因素:

主要受限于磁盘的寻道时间,优化磁盘数据访问的方法是尽量减少磁盘的IO次数。磁盘数据访问效率取决于磁盘IO次数,而磁盘IO次数又取决于数据在磁盘上的组织方式。磁盘数据存储大多采用B+树类型数据结构,这种数据结构针对磁盘数据的存储和访问进行了优化,减少访问数据时磁盘IO次数。

1.2、常用的数据结构

1.2.1、B+树

B+树是一种专门针对磁盘存储而优化的N叉排序树,以树节点为单位存储在磁盘中,从根开始查找所需数据所在的节点编号和磁盘位置,将其加载到内存中然后继续查找,直到找到所需的数据。

目前数据库多采用两级索引的B+树,树的层次最多三层。因此可能需要5次磁盘访问才能更新一条记录(三次磁盘访问获得数据索引及行ID,然后再进行一次数据文件读操作及一次数据文件写操作)。

但是由于每次磁盘访问都是随机的,而传统机械硬盘在数据随机访问时性能较差,每次数据访问都需要多次访问磁盘影响数据访问性能。

1.2.2、LSM树

LSM树可以看作是一个N阶合并树。LSM树本质上就是在读写之间取得平衡;

和B+树相比,它牺牲了部分读性能,用来大幅提高写性能。

它的原理是把一颗大树拆分成N棵小树, 它首先写入到内存中(内存没有寻道速度的问题,随机写的性能得到大幅提升),在内存中构建一颗有序小树,随着小树越来越大,内存的小树会flush到磁盘上。

当读时,由于不知道数据在哪棵小树上,因此必须遍历所有的小树,但在每颗小树内部数据是有序的。

数据写操作(包括插入、修改、删除)都在内存中进行,并且都会创建一个新记录(修改会记录新的数据值,而删除会记录一个删除标志),这些数据在内存中仍然还是一棵排序树,当数据量超过设定的内存阈值后,会将这棵排序树和磁盘上最新的排序树合并。当这棵排序树的数据量也超过设定阈值后,和磁盘上下一级的排序树合并。合并过程中,会用最新更新的数据覆盖旧的数据(或者记录为不同版本)。在需要进行读操作时,总是从内存中的排序树开始搜索,如果没有找到,就从磁盘上的排序树顺序查找。

在LSM树上进行一次数据更新不需要磁盘访问,在内存即可完成,速度远快于B+树。当数据访问以写操作为主,而读操作则集中在最近写入的数据上时,使用LSM树可以极大程度地减少磁盘的访问次数,加快访问速度。

Leveldb是Google开源的一个快速,轻量级的key-value存储引擎,以库的形式提供,没有提供上层c/s架构和网络通信的功能。Leveldb存储引擎的功能如下:

1、提供key-value存储,key和value是任意的二进制数据。数据是按照key有序存储的,可以修改排序规则。

2、只提供了Put/Get/Delete等基本操作接口,支持批量原子操作。

3、支持快照功能。

4、支持数据的正向和反向遍历访问。

5、支持数据压缩功能(Snappy压缩)。

6、支持多线程同步,但不支持多进程同时访问。

二、LevelDB的组成:

构成LevelDb静态结构的包括六个主要部分:内存中的MemTable和Immutable MemTable以及磁盘上的几种主要文件:Current文件、Manifest文件、log文件以及SSTable文件。如下图所示

2.1、写操作:

我们通过写操作来综合了解下这几个文件:

当应用写入一条Key:Value记录的时候,LevelDb会先往log文件里追加写入,成功后将记录插进Memtable中,这样基本就算完成了写入操作,因为一次写入操作只涉及一次磁盘顺序写和一次内存写入,这是LevelDb写入速度极快的主要原因。

Log文件在系统中的作用主要是用于系统崩溃恢复而不丢失数据,假如没有Log文件,因为写入的记录刚开始是保存在内存中的,此时如果系统崩溃,内存中的数据还没有来得及Dump到磁盘,所以会丢失数据。为了避免这种情况,LevelDb在写入内存前先将操作记录到Log文件中,然后再记入内存中,这样即使系统崩溃,也可以从Log文件中恢复内存中的Memtable,不会造成数据的丢失。

当Memtable插入的数据占用内存到了一个界限后,需要将内存的记录导出到外存文件中,LevleDb会生成新的Log文件和Memtable,原先的Memtable就成为Immutable Memtable,顾名思义,就是说这个文件的内容是不可更改的。新到来的数据被记入新的Log文件和Memtable,LevelDb后台调度会将Immutable Memtable的数据导出到磁盘,形成一个新的SSTable文件。SSTable就是由内存中的数据不断导出并进行Compaction操作后形成的,而且SSTable的所有文件是一种层级结构,第一层为Level 0,第二层为Level 1,依次类推,层级逐渐增高,这也是为何称为LevelDb的原因。

SSTable中的文件是Key有序的,各个Level的SSTable都是如此,但是需要注意的是:Level 0的SSTable文件(后缀为.sst)和其它Level的文件相比有特殊性:这个层级内的.sst文件,两个文件可能存在key重叠,比如有两个level 0的sst文件,文件A和文件B,文件A的key范围是:{bar, car},文件B的Key范围是{blue,samecity},那么很可能两个文件都存在key=”blood”的记录。对于其它Level的SSTable文件来说,则不会出现同一层级内.sst文件的key重叠现象,就是说Level L中任意两个.sst文件,那么可以保证它们的key值是不会重叠的。这点需要特别注意。

SSTable中的某个文件属于特定层级,而且其存储的记录是key有序的,那么必然有文件中的最小key和最大key,这是非常重要的信息。Manifest就是记载SSTable各个文件的管理信息,比如属于哪个Level,文件名称叫什么,最小key和最大key各自是多少。

Current文件是记载当前的manifest文件名。因为在LevleDb的运行过程中,随着Compaction的进行,SSTable文件会发生变化,会有新的文件产生,老的文件被废弃,Manifest也会跟着反映这种变化,此时往往会新生成Manifest文件来记载这种变化,而Current则用来指出哪个Manifest文件才是我们关心的那个Manifest文件。

当某个level下的SSTable文件数目超过一定设置值后,levelDb会从这个level的SSTable中选择n个文件(level>0时,n=1;level=0时因key有重叠,n>=1),将其和高一层级的level+1的SSTable文件合并,这就是major compaction。 对于 compaction,下文具体分析。

另外,LevelDB的写操作是线程安全的:LevelDB Write 的线程安全是通过将所有的写入插入到一个队列中, 然后有且仅有一个线程去消费这个队列来做到的. 消费这个队列的线程会把队列头部的几个Batch合并成一个大的Batch 一起消费掉, 也是为了提高效率.

log文件内是key无序的,而Memtable中是key有序的,如何实现LevelDB的删除操作?对于levelDb来说,并不存在立即删除的操作,而是与插入操作相同的,区别是,插入操作插入的是Key:Value 值,而删除操作插入的是“Key:删除标记”,并不真正去删除记录,而是后台Compaction的时候才去做真正的删除操作。

2.2、读取记录

1、LevelDB首先会去查看内存中的Memtable,如果Memtable中包含key及其对应的value,则返回value值即可;

2、如果在Memtable没有读到key,则接下来到同样处于内存中的Immutable Memtable中去读取,类似地,如果读到就返回;

3、若是没有读到,那么只能万般无奈下从磁盘中的大量SSTable文件中查找。因为SSTable数量较多,而且分成多个Level,首先从属于level 0的文件中查找,如果找到则返回对应的value值,如果没有找到那么到level 1中的文件中去找,如此循环往复,直到在某层SSTable文件中找到这个key对应的value为止(或者查到最高level,查找失败,说明整个系统中不存在这个Key)。

2.2.1、为何选择是从低level到高level的查询路径

1、从信息的更新时间来说,很明显Memtable存储的是最新鲜的KV对;

2、Immutable Memtable中存储的KV数据对的新鲜程度次之;而所有SSTable文件中的KV数据新鲜程度一定不如内存中的Memtable和Immutable Memtable的。

3、对于SSTable文件来说,如果同时在level L和Level L+1找到同一个key,level L的信息一定比level L+1的要新。也就是说,上面列出的查找路径就是按照数据新鲜程度排列出来的,越新鲜的越先查找。同样的key,不同的value;逻辑上理解好像levelDb中只有一个存储记录,即最新的记录,但是在levelDb中很可能存在两条记录,比如记录分别存在Level L和Level L+1中。如果同时在level L和Level L+1找到同一个key,level L的信息一定比level L+1的要新。从道理上讲呢,Level L+1的数据是从Level L 经过Compaction后得到的,Level L比Level L+1的数据要新鲜。

2.2.2、SSTable文件很多,如何快速地找到key对应的value值

1、在LevelDb中,在level 0和其它level中查找某个key的过程是不一样的。

2、因为level 0下的不同文件可能key的范围有重叠,某个要查询的key有可能多个文件都包含,这样的话LevelDb的策略是先找出level 0中哪些文件包含这个key(manifest文件中记载了level和对应的文件及文件里key的范围信息,LevelDb在内存中保留这种映射表), 之后按照文件的新鲜程度排序,新的文件排在前面,之后依次查找,读出key对应的value。而如果是非level 0的话,因为这个level的文件之间key是不重叠的,所以只从一个文件就可以找到key对应的value。

3、如果给定一个要查询的key和某个key range包含这个key的SSTable文件,那么levelDb一般会先在内存中的Cache中查找是否包含这个文件的缓存记录,如果包含,则从缓存中读取;如果不包含,则打开SSTable文件,同时将这个文件的索引部分加载到内存中并放入Cache中。 这样Cache里面就有了这个SSTable的缓存项,但是只有索引部分在内存中,之后levelDb根据索引可以定位到哪个内容Block会包含这条key,从文件中读出这个Block的内容,在根据记录一一比较,如果找到则返回结果,如果没有找到,那么说明这个level的SSTable文件并不包含这个key,所以到下一级别的SSTable中去查找。

2.3、Compaction操作

LevelDB的compaction操作包含minor compaction和major compaction两种

Minor compaction 的目的是当内存中的memtable大小到了一定值时,将内容保存到磁盘文件中,如下图所示

从上图可以看出,

1、当memtable数量到了一定程度会转换为immutable memtable,此时不能往其中写入记录,只能从中读取KV内容。immutable memtable其实是一个多层级队列SkipList,其中的记录是根据key有序排列的。按照immutable memtable中记录由小到大遍历,并依次写入一个level 0 的新建SSTable文件中,写完后建立文件的index 数据,这样就完成了一次minor compaction。从图中也可以看出,对于被删除的记录,在minor compaction过程中并不真正删除这个记录,原因也很简单,这里只知道要删掉key记录,但是这个KV数据在哪里?那需要复杂的查找,所以在minor compaction的时候并不做删除,只是将这个key作为一个记录写入文件中,至于真正的删除操作,在以后更高层级的compaction中会去做。

2、当某个level下的SSTable文件数目超过一定设置值后,levelDb会从这个level的SSTable中选择一个文件(level>0),将其和高一层级的level+1的SSTable文件合并,这就是major compaction。

在大于0的层级中,每个SSTable文件内的Key都是由小到大有序存储的,而且不同文件之间的key范围(文件内最小key和最大key之间)不会有任何重叠。但是因为level 0的文件是通过minor compaction直接生成的,所以任意两个level 0下的两个sstable文件可能再key范围上有重叠。所以在做major compaction的时候,对于大于level 0的层级,选择其中一个文件就行,但是对于level 0来说,指定某个文件后,本level中很可能有其他SSTable文件的key范围和这个文件有重叠,这种情况下,要找出所有有重叠的文件和level 1的文件进行合并,即level 0在进行文件选择的时候,可能会有多个文件参与major compaction。

levelDb在选定某个level进行compaction后,还要选择是具体哪个文件要进行compaction,levelDb采用轮流的方式,比如这次是文件A进行compaction,那么下次就是在key range上紧挨着文件A的文件B进行compaction,这样每个文件都会有机会轮流和高层的level 文件进行合并。

接着levelDb选择L+1层中和文件A在key range上有重叠的所有文件来和文件A进行合并。也就是说,选定了level L的文件A,之后在level L+1中找到了所有需要合并的文件B,C,D等。合并的过程如下:

Major compaction的过程如下:对多个文件采用多路归并排序的方式,依次找出其中最小的Key记录,也就是对多个文件中的所有记录重新进行排序。之后采取一定的标准判断这个Key是否还需要保存,如果判断没有保存价值,那么直接抛掉,如果觉得还需要继续保存,那么就将其写入level L+1层中新生成的一个SSTable文件中。就这样对KV数据一一处理,形成了一系列新的L+1层数据文件,之前的L层文件和L+1层参与compaction 的文件数据此时已经没有意义了,所以全部删除。这样就完成了L层和L+1层文件记录的合并过程。在major compaction过程中,判断一个KV记录是否抛弃的其中一个标准是:对于某个key来说,如果在小于L层中存在这个Key,那么这个KV在major compaction过程中可以抛掉。因为对于层级低于L的文件中如果存在同一Key的记录,那么说明对于Key来说,有更新鲜的Value存在,那么过去的Value就等于没有意义了,所以可以删除。

大体了解了Level DB后,让我们来学习下Tair中的LDB。

ldb是基于leveldb开发的一款持久化产品,作为Tair的持久化存储引擎,适用于确实有持久化需求,richldb引擎内嵌Mdb作为内存KV级别cache,读写qps较高(万级别)的应用场景。ldb目前线上使用的ssd机型(SSD单机读10w qps 写2W tps (700B测试)),因此在成本上要比缓存型产品高出几倍。在支持的数据结构上和mdb相同,功能上ldb还支持范围查找,但基于性能考虑,需特别谨慎使用。

读流程

首先在MemTable文件中寻找,查看它的开始和结束是哪一部分,找到负责这个key的文件,从里面把这个数字给拿出来。对每一个LO都会去找,当然如果有一步能够找到就会提前返回。对于LeveIDB,会做一些聚合,尽量读一次盘能读少一些。

写流程

找到数据分区,存入操作指引,同时把结果插入到Mdb cache里。这样的话,持久化存储引擎的效率跟缓存性效率是一样的,如果数据有访问热点的话,访问的IP可以得到很好的保证。当memtable写满后dump成Level 0上的sstable,无数据合并。Level 会循环compact range。

Ldb的新功能

加入过期时间,嵌入一个datafilter逻辑,得到这个数据的时候会先过滤一下,比如设置一些过期数据,这个数据如果已经过期,它就会跳过去,就认为是不存在的。虽然持久化,但是就想把之前数据全部清掉,然后再写入新的,这样是有异步清理。它本身的compact是自己做的,有它内部自己的过程在level-n上做,这个过程当中现在主要做的工作就是把一些垃圾数据给清理了,在做机群变动的时候,因为Tair宕掉一台机器会做数据的重分布,导致数据备份的完整性和前端服务的可用性问题,这个过程可以把垃圾数据可以清理掉。如果按照自己的过程它不是很敏感,我们就要做高Levelcompact,我们会主动出发,加速一些range合并。使用binlog做异步跨集群数据同步。(这里还不是很清楚)

典型应用场景

1.存储黑白单数据,读qps很高,db无法承载。

2.计数器功能,更新非常频繁,且数据不可丢失。

RDB

名词解释:

Restful协议:(Representational State Transfer,资源是由URI来指定。对资源的操作包括获取、创建、修改和删除资源,这些操作正好对应HTTP协议提供的GET、POST、PUT和DELETE方法。通过操作资源的表现形式来操作资源。资源的表现形式则是XML或者HTML,取决于读者是机器还是人,是消费web服务的客户软件还是web浏览器。当然也可以是任何其他的格式。)

rdb是基于redis开发另一款内存型产品,tair抽取了redis内部存储引擎部分,支持redis所有数据结构,故rdb不仅支持key对应一个value的结构,同时也支持key对应多个value的结构,结构可以是list/map/set/zset。(注:很多同学会把value是一个map/list之类的对象和rdb支持的list/hash结构混为一谈。这里再强调一下,tair的key和value均为可序列化对象,因此如果value是map或者list之类的序列化之后的对象,这个还是属于key-value结构,而rdb支持的list/hash/set/zset,是指一个key对应多个value。比如:list就是key-{value1, value2, value3}。)设置限制内存quota,去除aof/vm,增加logiclock的概念,lazy清理db数据(比如想把area数据都清理掉,可能对当时运行会有影响,当后台再做的时候,可以根据前面访问的时候来比较一下logiclock,来确定这个数据是不是在它的生存周期里面,如果不在生存周期里面可以做清理,就是因为这个数据是不存在的。),特别适用容量小(一般在M级别,50G之内),读写qps高(万级别)的应用场景。由于是内存型产品,因此无法保证数据的安全性,对数据安全有要求的应用建议在后端加持久化数据源或使用ldb作为rdb的持久化。实现了Restful协议。

典型应用场景:

1.用list结构来显示最新的项目列表;

2.用sortedset来做排行榜,取Top N;

3.用set来做uniq操作,如页面访问者排重;

4.使用hset来做单key下多属性的项目,例如商品的基本信息,库存,价格等设置成多属性。

典型用法

  1. rdb集群应用,有复杂数据结构的需求。rdb不仅支持key对应一个value的结构,同时也支持key对应多个value的结构,结构可以是list/map/set/zset。

MDB

mdb是Tair最早的一款内存型产品,也是在公司内部应用最广泛的集中式缓存。特别适用容量小(一般在M级别,50G之内),读写QPS高(万级别)的应用场景。由于是内存型产品,因此无法保证数据的安全性,对数据安全有要求的应用建议在后端加持久化数据源(例如MySQL)

典型应用场景:

  1. 用于缓存,降低对后端数据库的访问压力。
  2. 临时数据存储,分钟级别后失效,偶尔部分数据丢失不会对业务产生较大影响。
  3. 读多写少,读qps达到万级别以上。

mdb是memche系统,在内存里面,真正内存管理使用page和slab。抽样出一个area的概念,有很多应用会共用,一个应用给第一个area,做一个逻辑分区,可以针对area获得配额,进行数据清除,不会影响其他的应用,做到逻辑分区。有些应用有些情况下,一些数据这段时间不想用,可以直接清掉,是可以支持的。

支持数据过期的应用,会有后台的一些逻辑来把它清理掉。它的内存使用率会是一个问题,所以会在一定时间去均衡slab,达到内存使用率优化。还对它各种操作、统计都做了很详细的监控,可以实时监控到这个集群的情况。

还有后台进程,后台进程能做两个事情,会定期对数据进行清理。另外一个为了内存利用率,会做一些均衡slab的管理,达到内存使用率的均衡。

典型用法

  1. session场景。这种场景一般访问量非常高,且对响应时间有很高的要求,对数据有一定的一致性要求。后端无数据源,数据丢失对应用影响不大。



作者:lxqfirst
链接:https://www.jianshu.com/p/91367e93612f
来源:简书
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1056488.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

排序篇(三)----交换排序

排序篇(三)----交换排序 1.冒泡排序 基本思想: ​ 通过不断地比较相邻的元素,将较大的元素往后移动,从而实现排序的目的。 具体的步骤如下: 从待排序的数组中选择相邻的两个元素进行比较,如果前一个元素大于后一个元素&#…

Java编程技巧:swagger2、knif4j集成SpringBoot或者SpringCloud项目

目录 1、springbootswagger2knif4j2、springbootswagger3knif4j3、springcloudswagger2knif4j 1、springbootswagger2knif4j 2、springbootswagger3knif4j 3、springcloudswagger2knif4j 注意点: Api注解:Controller类上的Api注解需要添加tags属性&a…

在云服务器上打开ftp服务-踩坑及心得

我们产生这个需求的原因是因为打算搭建一个博客,选择了使用wordpress框架。然后,在安装插件的过程中,需要使用FTP服务进行操作。于是,我们决定搞清楚这个过程,并在其中遇到的困难进行记录。 一、安装vsftpd # 安装 s…

python生成中金所期权行权价

参考沪深300股指期权的合约表,写一个工具函数: 使用方法 def get_format_option_gap(value: float, deviation: int 0): # 根据中证1000指数获取点位"""根据标准的行权价,生成不同档位的期权列表,适合中金所:…

铁道货车通用技术条件

声明 本文是学习GB-T 5600-2018 铁道货车通用技术条件. 而整理的学习笔记,分享出来希望更多人受益,如果存在侵权请及时联系我们 90 mm90 mm。 B.2 制造要求 B.2.1 车体钢结构组成后: a) 敞车钢质侧、端板的平面度公差应小于或等于15 mm/m; 压型侧、端板的平面度…

S0003-Mac下iTerm2+zsh+ohmyzsh打造优雅美观终端

背景 优雅耐看的终端工具,必是每个程序员的追求。 本人也不例外,从业几年先后使用过: windows电脑:cmd、git bash、wsl zsh、terminal zshMac电脑: 自带terminal、iTerm2、terminal zsh 其中windows terminal zsh、mac ter…

数据结构——二叉树的基本概念及顺序存储(堆)

目录 一.前言 二.树概念及结构 2.1 树的概念 2.2 树的相关概念 2.3 树的表现 2.4 树在实际中的应用(表示文件系统的目录树结构) 三.二叉树的概念及结构 3.1 概念 3.2 特殊的二叉树 3.3 二叉树的性质 3.4 二叉树的存储结构 3.4.1 顺序存储 3…

Vitamin K

各位 比对 机制 --Mechanism of Action of Vitamin K Carboxylase (VKC).IV. Intermediates and Transition State-davis2007.pdf --Mechanism of Action of Vitamin K Carboxylase (VKC).IV. Intermediates and Transition State-davis2007.pdf -- 维生素K的作用机制-dow…

房子再小,也要有自己的装修设计!福州中宅装饰,福州装修

小空间 也要有好设计 小户型的房子现在越来越受欢迎了 但是面积不大的小户型 怎么装修才能更适合居住呢? 那么多的东西又应该如何收纳呢? 白色系装修 采用白色系为装修的主色调 白色在装修上能让视觉上显得更宽敞 让小面积的房子 变得更多简洁大…

91、Redis - 事务 与 订阅-发布 相关的命令 及 演示

★ 事务相关的命令 Redis事务保证事务内的多条命令会按顺序作为整体执行,其他客户端发出的请求绝不可能被插入到事务处理的中间, 这样可以保证事务内所有命令作为一个隔离操作被执行。 Redis事务同样具有原子性,事务内所有命令要么全部被执…

最新AI智能创作系统源码V2.6.2/AI绘画系统/支持GPT联网提问/支持Prompt应用

一、AI创作系统 SparkAi创作系统是基于国外很火的ChatGPT进行开发的AI智能问答系统和AI绘画系统。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作ChatGPT?小编这里写一个详细图…

【C语言】IO流(文件操作)- scanf / printf没那么简单!

本篇文章目录 1. 为什么使用文件?2. 什么是文件?3. IO流的概念4. 操作文件的步骤文件指针4.1 打开文件和关闭文件4.2 读写文件(顺序读取)4.2.1 字符输入输出4.2.2 字符串(文本行)输入输出4.2.3 格式化输入输…

SSM - Springboot - MyBatis-Plus 全栈体系(十六)

第三章 MyBatis 三、MyBatis 多表映射 2. 对一映射 2.1 需求说明 根据 ID 查询订单,以及订单关联的用户的信息! 2.2 OrderMapper 接口 public interface OrderMapper {Order selectOrderWithCustomer(Integer orderId); }2.3 OrderMapper.xml 配置…

【【萌新的RiscV学习之在写代码之前对于关键路径的分析-11】】

萌新的RiscV学习之在写代码之前对于关键路径的分析-11 首先我们最简单的control 模块 全分段 因为只有分段 , 分开使用之后 , 各个阶段的具体功能才会合理使用 就像是为了后续 “气泡” 赋值 为 0 还有单独比较前递这种 EX : ALUOP ALUSrc …

Arcgis快速计算NDVI

Arcgis快速计算NDVI 一、问题描述 如何使用Arcgis像ENVI一样波段计算NDVI的值,事实上,Arcgis更快速一些。 二、操作步骤 首先准备好影像 打开窗口-影像分析 点击左上角 点击确定 (发现自己使用的遥感影像不对劲,是计算好了…

智慧公厕有多智能?智慧厕所黑科技揭秘

随着科技的不断进步,智能化已经渗透到了我们生活的方方面面,智慧公厕也成为了时代的产物之一。那么,智慧公厕究竟有多智能呢?本文将以智慧公厕专业厂家广州中期科技有限公司,大量精品案例项目,以实景实图实…

idea技巧--debug使用技巧

写在前面: idea是java开发主流的ide,debug也是常用的功能,但这个功能有着很多强大好用的技巧。现在来总结一下。 文章目录 条件断点条件的时候求值并记录。命中后移除 基础debug简单的介绍 debug中求值强制返回断点回退 条件断点 从打断点…

HTML5+CSS3+JS小实例:鼠标滚轮水平滚动

实例:鼠标滚轮水平滚动 技术栈:HTML+CSS+JS 效果: 源码: 【html】 <!DOCTYPE html> <html><head><meta http-equiv="content-type" content="text/html; charset=utf-8"><meta name="viewport" content="…

【深蓝学院】手写VIO第4章--基于滑动窗口算法的 VIO 系统:可观性和 一致性--笔记

0. 内容 由于我们是要做一个实时的定位系统&#xff0c;而不是SfM那种离线的三维重建的工作&#xff0c;所以需要在滑动窗口中不断地添加新数据以及删除旧数据&#xff0c;而前者可以把所有数据放在一个BA中求解。 1. 从高斯分布到信息矩阵 SLAM问题的建模&#xff0c;MAP->…

【卷积神经网络:Inception模型】

【卷积神经网络&#xff1a;Inception模型】 1 Inception模型的组成2 实现代码3 查看经典的Inceptioon模型 1 Inception模型的组成 Inception模型的组成主要由不同卷积核大小的卷积层拼接而成&#xff0c;其中一种带维度缩减的Inception模型可以减少参数量&#xff0c;引入更多…