Page Cache的产生和释放

news2024/11/26 9:38:05

Page Cache是如何产生和释放的,通俗一点,就是它的“生”(分配)与“死”(释放),即 Page Cache 的生命周期。

Page Cache产生

Page Cache有两种产生的方式:

Buffered I/O(标准 I/O);
Memory-Mapped I/O(存储映射 I/O)。

在这里插入图片描述

从图中可以看到,二者都可以产生Page Cache,但是两者产生的方式不同:

标准 I/O 是写的 (write(2)) 用户缓冲区 (Userpace Page 对应的内存),然后再将用户缓冲区里的数据拷贝到内核缓冲区 (Pagecache Page 对应的内存);如果是读的 (read(2)) 话则是先从内核缓冲区拷贝到用户缓冲区,再从用户缓冲区读数据,也就是 buffer 和文件内容不存在任何映射关系。
对于存储映射 I/O 而言,则是直接将 Pagecache Page 给映射到用户地址空间,用户直接读写 Pagecache Page 中内容。

显然,存储映射 I/O 要比标准 I/O 效率高一些,毕竟少了“用户空间到内核空间互相拷贝”的过程。这也是很多应用开发者发现,为什么使用内存映射 I/O 比标准 I/O 方式性能要好一些的主要原因。

接下来使用Shell脚本testPageCache.sh来演示一下Page Cache的产生。testPageCache.sh的内容如下所示:

#!/bin/sh

#这是我们用来解析的文件
MEM_FILE="/proc/meminfo"

#这是在该脚本中将要生成的一个新文件
NEW_FILE="/home/dd.write.out"

#我们用来解析的Page Cache的具体项
active=0
inactive=0
pagecache=0

IFS=' '

#从/proc/meminfo中读取File Page Cache的大小
function get_filecache_size()
{
        items=0
        while read line
        do
                if [[ "$line" =~ "Active:" ]]; then
                        read -ra ADDR <<<"$line"
                        active=${ADDR[1]}
                        let "items=$items+1"
                elif [[  "$line" =~ "Inactive:" ]]; then
                        read -ra ADDR <<<"$line"
                        inactive=${ADDR[1]}
                        let "items=$items+1"
                fi


                if [ $items -eq 2 ]; then
                        break;
                fi
        done < $MEM_FILE
}

#读取File Page Cache的初始大小
get_filecache_size
let filecache="$active + $inactive"

#写一个新文件,该文件的大小为1048576 KB
dd if=/dev/zero of=$NEW_FILE bs=1024 count=1048576 &> /dev/null

#文件写完后,再次读取File Page Cache的大小
get_filecache_size

#两次的差异可以近似为该新文件内容对应的File Page Cache
#之所以用近似是因为在运行的过程中也可能会有其他Page Cache产生
let size_increased="$active + $inactive - $filecache"

#输出结果
echo "File size 1048576KB, File Cache increased" $size_increased

chmod u+x testPageCache.shtestPageCache.sh当前用户加上可执行权限。

在这里插入图片描述
在这里提醒你一下,在运行该脚本前你要确保系统中有足够多的 free 内存(避免内存紧张产生回收行为)。

./testPageCache.sh执行。
在这里插入图片描述

通过这个脚本你可以看到,在创建一个文件的过程中,代码中 /proc/meminfo 里的 Active(file) 和 Inactive(file) 这两项会随着文件内容的增加而增加,它们增加的大小跟文件大小是一致的(这里之所以略有不同,是因为系统中还有其他程序在运行)。另外,如果你观察得很仔细的话,你会发现增加的 Page Cache 是 Inactive(File) 这一项。

这个过程看似简单,但是它涉及的内核机制还是很多的,换句话说,可能引起问题的地方还是很多的,我们用一张图简单描述下这个过程:
在这里插入图片描述

这个过程大致可以描述为:首先往用户缓冲区 buffer(这是 Userspace Page) 写入数据,然后 buffer 中的数据拷贝到内核缓冲区(这是 Pagecache Page),如果内核缓冲区中还没有这个 Page,就会发生 Page Fault 会去分配一个 Page,拷贝结束后该 Pagecache Page 是一个 Dirty Page(脏页),然后该 Dirty Page 中的内容会同步到磁盘,同步到磁盘后,该 Pagecache Page 变为 Clean Page 并且继续存在系统中。

可以将 Alloc Page 理解为 Page Cache 的“诞生”,将 Dirty Page 理解为 Page Cache 的婴幼儿时期(最容易生病的时期),将 Clean Page 理解为 Page Cache 的成年时期(在这个时期就很少会生病了)。

如果是读文件产生的 Page Cache,它的内容跟磁盘内容是一致的,所以它一开始是 Clean Page,除非改写了里面的内容才会变成 Dirty Page。

cat /proc/vmstat | egrep "dirty|writeback"可以用来监控Page Cache,nr_dirty 表示当前系统中积压了多少脏页,nr_writeback 则表示有多少脏页正在回写到磁盘中,他们两个的单位都是 Page(4KB)。
在这里插入图片描述

通常情况下,脏页积压不会有什么问题。如果积压得过多,在某些情况下也会容易引发问题。

Page Cache的回收

可以把 Page Cache 的回收行为 (Page Reclaim) 理解为 Page Cache 的“自然死亡”。
言归正传,我们知道,服务器运行久了后,系统中 free 的内存会越来越少,用 free 命令来查看,大部分都会是 used 内存或者 buff/cache 内存,free -g可以看一下内存使用情况。
在这里插入图片描述

free 命令中的 buff/cache 中的这些就是“活着”的 Page Cache,那它们什么时候会“死亡”(被回收)呢?我们来看一张图:
在这里插入图片描述

应用在申请内存的时候,即使没有 free 内存,只要还有足够可回收的 Page Cache,就可以通过回收 Page Cache 的方式来申请到内存,回收的方式主要是两种:直接回收后台回收

观察 Page Cache 直接回收和后台回收最简单方便的方式是使用 sar。sar -B 1就可以观察。
在这里插入图片描述

pgscank/s : kswapd(后台回收线程) 每秒扫描的 page 个数。
pgscand/s: Application 在内存申请过程中每秒直接扫描的 page 个数。
pgsteal/s: 扫描的 page 中每秒被回收的个数。
%vmeff: pgsteal/(pgscank+pgscand), 回收效率,越接近 100 说明系统越安全,越接近 0 说明系统内存压力越大。

这几个指标也是通过解析 /proc/vmstat 里面的数据来得出的,对应关系如下:
在这里插入图片描述

此文章为10月Day 学习笔记,内容来源于极客时间《Linux 内核技术实战课》

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1056388.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

十四天学会C++之第一天(入门和基本语法)

C的起源和历史 C诞生于20世纪80年代初&#xff0c;它的创造者是计算机科学家Bjarne Stroustrup。当时&#xff0c;Stroustrup在贝尔实验室工作&#xff0c;他希望为C语言添加一些功能&#xff0c;以便更好地支持系统开发。这个愿望促使他创建了C。 C的名字来源于它的基因&…

检索qpython文件夹下的.py,将文件复制单独文件夹并给出进度条

基本任务 检索qpython文件夹下的.py&#xff0c;将文件复制单独文件夹并给出进度条详细说明 首先导入了os和shutil模块&#xff0c;它们分别用于进行文件、文件夹操作和复制文件操作。 然后定义了源文件夹路径和目标文件夹路径。源文件夹路径指定了需要遍历的文件夹&#xff…

C语言刷题(Day1)

前言 本章我们带来几个经典得C语言练习题。 不要认为之前学过C语言&#xff0c;刷过这些题就不愿意再做题了。对待技术&#xff0c;我们永远要怀以一种空杯心态。 温故而知新&#xff0c;可以为师矣。 老师说&#xff0c;每道题都要尝试用不同得解法&#xff0c;去思考更多的…

动态规划算法(2)--最大子段和与最长公共子序列

目录 一、最大子段和 1、什么是最大子段和 2、暴力枚举 3、分治法 4、动态规划 二、最长公共子序列 1、什么是最长公共子序列 2、暴力枚举法 3、动态规划法 4、完整代码 一、最大子段和 1、什么是最大子段和 子段和就是数组中任意连续的一段序列的和&#xff0c;而…

Django之模板

一&#xff09;模板&#xff08;T&#xff09; 什么时候会使用模板呢&#xff1f; 仅对于Django这个框架来说&#xff0c;因为其是默认前后端不分离的框架&#xff08;前后端不分离值开发时前后端的代码在一起&#xff0c;不通过接口的方式连接&#xff0c;通过模板渲染的方式…

七大基于比较的排序算法(JAVA)

目录 冒泡排序 优化&#xff1a; 堆排序 插入排序 希尔排序 归并排序 快速排序 优化 选择排序 排序算法的稳定性&#xff1a; 大小相同的元素在排序前后相对位置相同就称其为稳定的排序。 注&#xff1a;一个本身就是稳定的排序 是可以实现为不稳定的排序的 &#x…

JavaSE学习之--抽象类,接口,内部类

&#x1f495;"没有眼泪我们就会迷路&#xff0c;彻底变成石头&#xff0c;我们的心会变成冰凌&#xff0c;吻会变成冰块。"&#x1f495; 作者&#xff1a;Mylvzi 文章主要内容&#xff1a;JavaSE学习之--抽象类&#xff0c;接口&#xff0c;内部类 目录 一.抽象…

【牛客网】OR59 字符串中找出连续最长的数字串

题目 思路 创建两个字符串 temp 和 ret 创建指针i用来遍历字符串通过i遍历字符串,如果遇到数字则将这个数组加到字符串temp中 i,如果遇到字母,则判断temp字符串的长度和ret字符串的长度,如果temp<ret则说明这个字符串不是要的字符串,如果temp>ret则说明此时temp字符串是…

线性表的链式存储结构——链表

一、顺序表优缺点 优点&#xff1a;我们知道顺序表结构简单&#xff0c;便于随机访问表中任一元素&#xff1b; 缺点&#xff1a;顺序存储结构不利于插入和删除&#xff0c;不利于扩充&#xff0c;也容易造成空间浪费。 二、链表的定义 ①&#xff1a;概念&#xff1a; 用一组任…

springmvc-页面跳转表单标签其他标签tomcat控制台中文乱码问题

1. WEB-INF下页面跳转 容器启动后&#xff0c;如何默认显示web-inf目录下的系统首页。 2. ModelAttribute来注解非请求处理方法 用途&#xff1a;预加载数据&#xff0c;会在每个RequestMapping方法执行之前调用。 特点&#xff1a;无需返回视图&#xff0c;返回类型void 示例…

【计算机网络黑皮书】应用层

【事先声明】 这是对于中科大的计算机网络的网课的学习笔记&#xff0c;感谢郑烇老师的无偿分享 书籍是《计算机网络&#xff08;自顶向下方法 第6版&#xff09;》 需要的可以私信我&#xff0c;无偿分享&#xff0c;课程简介下也有 课程连接 目录 应用层网络应用的原理应用架…

[BJDCTF2020]The mystery of ip

打开环境 点击flag&#xff0c;提示ip&#xff0c;这里确实就比较容易联想到x-forwarded-for 点击hint 这个好像没啥用 使用bp抓包 添加请求头 X-Forwarded-For:1 试一下 发现ip可控 后来查了发现 PHP可能存在Twig模版注入漏洞 参考https://www.cnblogs.com/zzjdbk/p/13…

Scala第十七章节

Scala第十七章节 scala总目录 文档资料下载 章节目标 了解集合的相关概念掌握Traversable集合的用法掌握随机学生序列案例 1. 集合 1.1 概述 但凡了解过编程的人都知道程序 算法 数据结构这句话, 它是由著名的瑞士计算机科学家尼古拉斯沃斯提出来的, 而他也是1984年图灵…

ADO连接Access的前期绑定方法实例(下)

【分享成果&#xff0c;随喜正能量】眾生多悲苦&#xff0c;發願‬菩提心。願今天所有聽見我、看見我、憶念我的眾生&#xff0c;因我心而‬生喜悅&#xff01;除消身心的痛苦&#xff01;種下脫解‬的種子&#xff01;願我等‬身心念力所及之處一切眾切‬生因佛得度&#xff0…

【AI视野·今日CV 计算机视觉论文速览 第258期】Mon, 2 Oct 2023

AI视野今日CS.CV 计算机视觉论文速览 Mon, 2 Oct 2023 (showing first 100 of 112 entries) Totally 100 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Computer Vision Papers Multi-task View Synthesis with Neural Radiance Fields Authors Shuhong Zheng, Zh…

Vue的模板语法

Vue的模板语法 Vue 使用一种基于 HTML 的模板语法&#xff0c;使我们能够声明式地将其组件实例的数据绑定到呈现的 DOM 上。所有的 Vue 模板都是语法层面合法的 HTML&#xff0c;可以被符合规范的浏览器和 HTML 解析器解析。 测试准备 为了方便测试&#xff0c;先将vue-base项…

【AI视野·今日Robot 机器人论文速览 第四十五期】Mon, 2 Oct 2023

AI视野今日CS.Robotics 机器人学论文速览 Mon, 2 Oct 2023 Totally 42 papers &#x1f449;上期速览✈更多精彩请移步主页 Daily Robotics Papers Learning Decentralized Flocking Controllers with Spatio-Temporal Graph Neural Network Authors Siji Chen, Yanshen Sun, …

守护进程解析

什么是守护进程&#xff1f; - 知乎 什么是守护进程&#xff1a;生存期长的一种进程&#xff0c;没有控制终端。它们常常在系统引导装入时启动&#xff0c;仅在系统关闭时才终止。 进程组 &#xff1a; 每个进程除了有一个进程ID之外&#xff0c;还属于一个进程组进程组是一…

【已解决】opencv 交叉编译 ffmpeg选项始终为NO

一、opencv 交叉编译没有 ffmpeg &#xff0c;会导致视频打不开 在交叉编译时候&#xff0c;发现在 pc 端能用 opencv 打开的视频&#xff0c;但是在 rv1126 上打不开。在网上查了很久&#xff0c;原因可能是 交叉编译过程 ffmpeg 造成的。之前 ffmpeg 是直接用 apt 安装的&am…