创建型设计模式 单例 工厂模式 看这一篇就够了

news2025/1/23 2:13:52

4,创建型模式

创建型模式的主要关注点是“怎样创建对象?”,它的主要特点是“将对象的创建与使用分离”。

这样可以降低系统的耦合度,使用者不需要关注对象的创建细节

创建型模式分为:

  • 单例模式
  • 工厂方法模式
  • 抽象工程模式
  • 原型模式
  • 建造者模式

4.1 单例设计模式

单例模式(Singleton Pattern)是 Java 中最简单的设计模式之一。这种类型的设计模式属于创建型模式,它提供了一种创建对象的最佳方式。

这种模式涉及到一个单一的类,该类负责创建自己的对象,同时确保只有单个对象被创建。这个类提供了一种访问其唯一的对象的方式,可以直接访问,不需要实例化该类的对象。

4.1.1 单例模式的结构

单例模式的主要有以下角色:

  • 单例类。只能创建一个实例的类
  • 访问类。使用单例类

4.1.2 单例模式的实现

单例设计模式分类两种:
饿汉式:类加载就会 导致该单实例对象被创建
懒汉式:类加载不会导致该单实例对象被创建,而是 首次使用该对象时才会创
饿汉式-方式1(静态变量方式)
/**
 * 饿汉式
 *      静态变量创建类的对象
 */
public class Singleton {
    //私有构造方法
    private Singleton() {}

    //在成员位置创建该类的对象
    private static Singleton instance = new Singleton();

    //对外提供静态方法获取该对象
    public static Singleton getInstance() {
        return instance;
    }
}

说明:

该方式成员位置声明Singleton类型的静态变量,并创建Singleton类的对象instance。instance对象是随着类的加载而创建的。如果该对象足够大的话,而一直没有使用就会造成内存的浪费

饿汉式-方式2(静态代码块方式)
/**
 * 恶汉式
 *      在静态代码块中创建该类对象
 */
public class Singleton {

    //私有构造方法
    private Singleton() {}

    //在成员位置创建该类的对象
    private static Singleton instance;

    static {
        instance = new Singleton();
    }

    //对外提供静态方法获取该对象
    public static Singleton getInstance() {
        return instance;
    }
}

说明:

该方式在成员位置声明Singleton类型的静态变量,而对象的创建是在静态代码块中,也是对着类的加载而创建。所以和饿汉式的方式1基本上一样,当然该方式也存在内存浪费问题。

懒汉式-方式1(线程不安全)
/**
 *  懒汉式
 *  线程不安全
 */
public class Singleton {
    //私有构造方法
    private Singleton() {}

    //在成员位置创建该类的对象
    private static Singleton instance;

    //对外提供静态方法获取该对象
    public static Singleton getInstance() {

        if(instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

说明:

从上面代码我们可以看出该方式在成员位置声明Singleton类型的静态变量,并没有进行对象的赋值操作,那么什么时候赋值的呢?当调用getInstance()方法获取Singleton类的对象的时候才创建Singleton类的对象,这样就实现了懒加载的效果。但是,如果是多线程环境,会出现线程安全问题。

懒汉式-方式2(线程安全
/**
 * 懒汉式
 *  线程安全
 */
public class Singleton {
    //私有构造方法
    private Singleton() {}

    //在成员位置创建该类的对象
    private static Singleton instance;

    //对外提供静态方法获取该对象
    public static synchronized Singleton getInstance() {

        if(instance == null) {
            instance = new Singleton();
        }
        return instance;
    }
}

说明:

该方式也实现了懒加载效果,同时又解决了线程安全问题。但是在getInstance()方法上添加了synchronized关键字,导致该方法的执行效果特别低。从上面代码我们可以看出,其实就是在初始化instance的时候才会出现线程安全问题,一旦初始化完成就不存在了。

懒汉式-方式3(双重检查锁

再来讨论一下懒汉模式中加锁的问题,对于 getInstance() 方法来说,绝大部分的操作都是读操作,读操作是线程安全的,所以我们没必让每个线程必须持有锁才能调用该方法,我们需要调整加锁的时机。由此也产生了一种新的实现模式:双重检查锁模式

/**
 * 双重检查方式
 */
public class Singleton { 

    //私有构造方法
    private Singleton() {}
    private static Singleton instance;

   //对外提供静态方法获取该对象
    public static Singleton getInstance() {
		//第一次判断,如果instance不为null,不进入抢锁阶段,直接return实例
        if(instance == null) {
            synchronized (Singleton.class) {
                //抢到锁之后再次判断是否为null
                if(instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

双重检查锁模式是一种非常好的单例实现模式,解决了单例、性能、线程安全问题,上面的双重检测锁模式看上去完美无缺,其实是存在问题,在多线程的情况下,可能会出现空指针问题,出现问题的原因是JVM在实例化对象的时候会进行优化和指令重排序操作。

解决双重检查锁模式带来空指针异常的问题,只需要使用 volatile 关键字, volatile 关键字可以保证可见性和有序性。

/**
 * 双重检查方式
 */
public class Singleton {

    //私有构造方法
    private Singleton() {}

    private static volatile Singleton instance;

   //对外提供静态方法获取该对象
    public static Singleton getInstance() {
		//第一次判断,如果instance不为null,不进入抢锁阶段,直接返回实际
        if(instance == null) {
            synchronized (Singleton.class) {
                //抢到锁之后再次判断是否为空
                if(instance == null) {
                    instance = new Singleton();
                }
            }
        }
        return instance;
    }
}

小结:

添加 volatile 关键字之后的双重检查锁模式是一种比较好的单例实现模式,能够保证在多线程的情况下线程安全也不会有性能问题

懒汉式-方式4(静态内部类方式)

静态内部类单例模式中实例由内部类创建,由于 JVM 在加载外部类的过程中, 是不会加载静态内部类的, 只有内部类的属性/方法被调用时才会被加载, 并初始化其静态属性。静态属性由于被 static 修饰,保证只被实例化一次,并且严格保证实例化顺序

/**
 * 静态内部类方式
 */
public class Singleton {

    //私有构造方法
    private Singleton() {}

    private static class SingletonHolder {
        private static final Singleton INSTANCE = new Singleton();
    }

    //对外提供静态方法获取该对象
    public static Singleton getInstance() {
        return SingletonHolder.INSTANCE;
    }
}

说明:

第一次加载Singleton类时不会去初始化INSTANCE,只有第一次调用getInstance,虚拟机加载SingletonHolder并初始化INSTANCE,这样不仅能确保线程安全,也能保证 Singleton 类的唯一性。

小结:

静态内部类单例模式是一种优秀的单例模式,是开源项目中比较常用的一种单例模式。在没有加任何锁的情况下,保证了多线程下的安全,并且没有任何性能影响和空间的浪费。

枚举方式

枚举类实现单例模式是极力推荐的单例实现模式,因为枚举类型是线程安全的,并且只会装载一次,设计者充分的利用了枚举的这个特性来实现单例模式,枚举的写法非常简单,而且枚举类型是所用单例实现中唯一一种不会被破坏的单例实现模式。

/**
 * 枚举方式
 */
public enum Singleton {
    INSTANCE;
}

说明:

枚举方式属于恶汉式方式。

4.1.3 存在的问题

4.1.3.1 问题演示

破坏单例模式:

使上面定义的单例类(Singleton)可以创建多个对象,枚举方式除外。

有两种方式,分别是序列化和反射。

序列化反序列化

Singleton类:

public class Singleton implements Serializable {

    //私有构造方法
    private Singleton() {}

    private static class SingletonHolder {
        private static final Singleton INSTANCE = new Singleton();
    }

    //对外提供静态方法获取该对象
    public static Singleton getInstance() {
        return SingletonHolder.INSTANCE;
    }
}

Test类:

public class Test {
    public static void main(String[] args) throws Exception {
        //往文件中写对象
        //writeObject2File();
        //从文件中读取对象
        Singleton s1 = readObjectFromFile();
        Singleton s2 = readObjectFromFile();

        //判断两个反序列化后的对象是否是同一个对象
        System.out.println(s1 == s2);
            //不是同一个对象,破坏了单例模式
    }

    private static Singleton readObjectFromFile() throws Exception {
        //创建对象输入流对象
        ObjectInputStream ois = new ObjectInputStream(new FileInputStream("C:\\Users\\Think\\Desktop\\a.txt"));
        //第一个读取Singleton对象
        Singleton instance = (Singleton) ois.readObject();

        return instance;
    }

    public static void writeObject2File() throws Exception {
        //获取Singleton类的对象
        Singleton instance = Singleton.getInstance();
        //创建对象输出流
        ObjectOutputStream oos = new ObjectOutputStream(new FileOutputStream("C:\\Users\\Think\\Desktop\\a.txt"));
        //将instance对象写出到文件中
        oos.writeObject(instance);
    }
}
上面代码运行结果是 false,表明 序列化和反序列化已经破坏了单例设计模式。
反射

Singleton类:

public class Singleton {

    //私有构造方法
    private Singleton() {}    
    private static volatile Singleton instance;

    //对外提供静态方法获取该对象
    public static Singleton getInstance() {

        if(instance != null) {
            return instance;
        }

        synchronized (Singleton.class) {
            if(instance != null) {
                return instance;
            }
            instance = new Singleton();
            return instance;
        }
    }
}

Test类:

public class Test {
    public static void main(String[] args) throws Exception {
        //获取Singleton类的字节码对象
        Class clazz = Singleton.class;
        //获取Singleton类的私有无参构造方法对象
        Constructor constructor = clazz.getDeclaredConstructor();
        //取消访问检查
        constructor.setAccessible(true);

        //创建Singleton类的对象s1
        Singleton s1 = (Singleton) constructor.newInstance();
        //创建Singleton类的对象s2
        Singleton s2 = (Singleton) constructor.newInstance();

        //判断通过反射创建的两个Singleton对象是否是同一个对象
        System.out.println(s1 == s2);
    }
}
上面代码运行结果是 false,表明 反射 已经破坏了单例设计模式
注意: 枚举方式不会出现这两个问题。
4.1.3.2 问题的解决
  • 序列化、反序列方式破坏单例模式的解决方法

在Singleton类中添加readResolve()方法,在反序列化时被反射调用,如果定义了这个方法,就返回这个方法的值,如果没有定义,则返回新new出来的对象。

Singleton类:

public class Singleton implements Serializable {

    //私有构造方法
    private Singleton() {}

    private static class SingletonHolder {
        private static final Singleton INSTANCE = new Singleton();
    }

    //对外提供静态方法获取该对象
    public static Singleton getInstance() {
        return SingletonHolder.INSTANCE;
    }
    
    /**
     * 下面是为了解决序列化反序列化破解单例模式
     */
    private Object readResolve() {
        return SingletonHolder.INSTANCE;
    }
}

源码解析:

底层是readObject()方法->readObject0->readOrdinaryObject->调用的readResolve

ObjectInputStream类

public final Object readObject() throws IOException, ClassNotFoundException{
    ...
    // if nested read, passHandle contains handle of enclosing object
    int outerHandle = passHandle;
    try {
        Object obj = readObject0(false);//重点查看readObject0方法
    .....
}
    
private Object readObject0(boolean unshared) throws IOException {
	...
    try {
		switch (tc) {
			...
			case TC_OBJECT:
				return checkResolve(readOrdinaryObject(unshared));//重点查看readOrdinaryObject方法
			...
        }
    } finally {
        depth--;
        bin.setBlockDataMode(oldMode);
    }    
}
    
private Object readOrdinaryObject(boolean unshared) throws IOException {
	...
	//isInstantiable 返回true,执行 desc.newInstance(),通过反射创建新的单例类,
    obj = desc.isInstantiable() ? desc.newInstance() : null; 
    ...
    // 在Singleton类中添加 readResolve 方法后 desc.hasReadResolveMethod() 方法执行结果为true
    if (obj != null && handles.lookupException(passHandle) == null && desc.hasReadResolveMethod()) {
    	// 通过反射调用 Singleton 类中的 readResolve 方法,将返回值赋值给rep变量
    	// 这样多次调用ObjectInputStream类中的readObject方法,继而就会调用我们定义的readResolve方法,所以返回的是同一个对象。
    	Object rep = desc.invokeReadResolve(obj);
     	...
    }
    return obj;
}
  • 反射方式破解单例的解决方法
public class Singleton {

    //私有构造方法
    private Singleton() {
        /*
           反射破解单例模式需要添加的代码
        */
        if(instance != null) {
            throw new RuntimeException();
        }
    }
    
    private static volatile Singleton instance;

    //对外提供静态方法获取该对象
    public static Singleton getInstance() {

        if(instance != null) {
            return instance;
        }

        synchronized (Singleton.class) {
            if(instance != null) {
                return instance;
            }
            instance = new Singleton();
            return instance;
        }
    }
}

说明:

这种方式比较好理解。当通过反射方式调用构造方法进行创建创建时,直接抛异常。不运行此中操作。

4.1.4 JDK源码解析-Runtime类

Runtime类就是使用的单例设计模式。

  1. 通过源代码查看使用的是哪儿种单例模式
public class Runtime {
    private static Runtime currentRuntime = new Runtime();

    /**
     * Returns the runtime object associated with the current Java application.
     * Most of the methods of class <code>Runtime</code> are instance
     * methods and must be invoked with respect to the current runtime object.
     *
     * @return  the <code>Runtime</code> object associated with the current
     *          Java application.
     */
    public static Runtime getRuntime() {
        return currentRuntime;
    }

    /** Don't let anyone else instantiate this class */
    private Runtime() {}
    ...
}
private static Runtime currentRuntime = new Runtime();

从上面源代码中可以看出Runtime类使用的是饿汉式(静态属性)方式来实现单例模式的。

  1. 使用Runtime类中的方法
public class RuntimeDemo {
    public static void main(String[] args) throws IOException {
        //获取Runtime类对象
        Runtime runtime = Runtime.getRuntime();

        //返回 Java 虚拟机中的内存总量。
        System.out.println(runtime.totalMemory());
        //返回 Java 虚拟机试图使用的最大内存量。
        System.out.println(runtime.maxMemory());

        //创建一个新的进程执行指定的字符串命令,返回进程对象
        Process process = runtime.exec("ipconfig");
        //获取命令执行后的结果,通过输入流获取
        InputStream inputStream = process.getInputStream();
        byte[] arr = new byte[1024 * 1024* 100];
        int b = inputStream.read(arr);
        System.out.println(new String(arr,0,b,"gbk"));
    }
}

4.2 工厂模式

4.2.1 概述

需求:设计一个咖啡店点餐系统。

设计一个咖啡类(Coffee),并定义其两个子类(美式咖啡【AmericanCoffee】和拿铁咖啡【LatteCoffee】);再设计一个咖啡店类(CoffeeStore),咖啡店具有点咖啡的功能。

具体类的设计如下:

在java中,万物皆对象,这些对象都需要创建,如果创建的时候直接new该对象,就会对该对象耦合严重,假如我们要更换对象,所有new对象的地方都需要修改一遍,这显然违背了软件设计的开闭原则。如果我们使用工厂来生产对象,我们就只和工厂打交道就可以了,彻底和对象解耦,如果要更换对象,直接在工厂里更换该对象即可,达到了与对象解耦的目的;所以说,工厂模式最大的优点就是:解耦

在本教程中会介绍三种工厂的使用

  • 简单工厂模式(不属于GOF的23种经典设计模式)
  • 工厂方法模式
  • 抽象工厂模式

4.2.2 简单工厂模式

简单工厂不是一种设计模式,反而比较像是一种编程习惯。

4.2.2.1 结构

简单工厂包含如下角色:

  • 抽象产品 :定义了产品的规范,描述了产品的主要特性和功能。
  • 具体产品 :实现或者继承抽象产品的子类
  • 具体工厂 :提供了创建产品的方法,调用者通过该方法来获取产品。
4.2.2.2 实现

现在使用简单工厂对上面案例进行改进,类图如下:

工厂类代码如下:

public class SimpleCoffeeFactory {

    public Coffee createCoffee(String type) {
        Coffee coffee = null;
        if("americano".equals(type)) {
            coffee = new AmericanoCoffee();
        } else if("latte".equals(type)) {
            coffee = new LatteCoffee();
        }
        return coffee;
    }
}

工厂(factory)处理创建对象的细节,一旦有了SimpleCoffeeFactory,CoffeeStore类中的orderCoffee()就变成此对象的客户,后期如果需要Coffee对象直接从工厂中获取即可。这样也就解除了和Coffee实现类的耦合,同时又产生了新的耦合,CoffeeStore对象和SimpleCoffeeFactory工厂对象的耦合,工厂对象和商品对象的耦合。

后期如果再加新品种的咖啡,我们势必要需求修改SimpleCoffeeFactory的代码,违反了开闭原则。工厂类的客户端可能有很多,比如创建美团外卖等,这样只需要修改工厂类的代码,省去其他的修改操作。

4.2.2.4 优缺点

优点:

封装了创建对象的过程,可以通过参数直接获取对象。把对象的创建和业务逻辑层分开,这样以后就避免了修改客户代码,如果要实现新产品直接修改工厂类,而不需要在原代码中修改,这样就降低了客户代码修改的可能性,更加容易扩展。

缺点:

增加新产品时还是需要修改工厂类的代码,违背了“开闭原则”。

4.2.2.3 扩展

静态工厂

在开发中也有一部分人将工厂类中的创建对象的功能定义为静态的,这个就是静态工厂模式,它也不是23种设计模式中的。代码如下:

public class SimpleCoffeeFactory {

    public static Coffee createCoffee(String type) {
        Coffee coffee = null;
        if("americano".equals(type)) {
            coffee = new AmericanoCoffee();
        } else if("latte".equals(type)) {
            coffee = new LatteCoffee();
        }
        return coffe;
    }
}

4.2.3 工厂方法模式

针对上例中的缺点,使用工厂方法模式就可以完美的解决,完全遵循开闭原则。

4.2.3.1 概念

定义一个用于创建对象的接口,让子类决定实例化哪个产品类对象。工厂方法使一个产品类的实例化延迟到其工厂的子类。

4.2.3.2 结构

工厂方法模式的主要角色:

  • 抽象工厂(Abstract Factory):提供了创建产品的接口,调用者通过它访问具体工厂的工厂方法来创建产品。
  • 具体工厂(ConcreteFactory):主要是实现抽象工厂中的抽象方法,完成具体产品的创建。
  • 抽象产品(Product):定义了产品的规范,描述了产品的主要特性和功能。
  • 具体产品(ConcreteProduct):实现了抽象产品角色所定义的接口,由具体工厂来创建,它同具体工厂之间一一对应。
4.2.3.3 实现

使用工厂方法模式对上例进行改进,类图如下:

代码如下:

抽象工厂:

public interface CoffeeFactory {
    Coffee createCoffee();
}

具体工厂:

public class LatteCoffeeFactory implements CoffeeFactory {

    public Coffee createCoffee() {
        return new LatteCoffee();
    }
}

public class AmericanCoffeeFactory implements CoffeeFactory {

    public Coffee createCoffee() {
        return new AmericanCoffee();
    }
}

咖啡店类:

public class CoffeeStore {

    private CoffeeFactory factory;

    public CoffeeStore(CoffeeFactory factory) {
        this.factory = factory;
    }

    public Coffee orderCoffee(String type) {
        Coffee coffee = factory.createCoffee();
        coffee.addMilk();
        coffee.addsugar();
        return coffee;
    }
}

从以上的编写的代码可以看到,要增加产品类时也要相应地增加工厂类,不需要修改工厂类的代码了,这样就解决了简单工厂模式的缺点。

工厂方法模式是简单工厂模式的进一步抽象。由于使用了多态性,工厂方法模式保持了简单工厂模式的优点,而且克服了它的缺点。

4.2.3.4 优缺点

优点:

  • 用户只需要知道具体工厂的名称就可得到所要的产品,无须知道产品的具体创建过程;
  • 在系统增加新的产品时只需要添加具体产品类和对应的具体工厂类,无须对原工厂进行任何修改,满足开闭原则;

缺点:

  • 每增加一个产品就要增加一个具体产品类和一个对应的具体工厂类,这增加了系统的复杂度。

4.2.4 抽象工厂模式

前面介绍的工厂方法模式中考虑的是一类产品的生产,如畜牧场只养动物、电视机厂只生产电视机、传智播客只培养计算机软件专业的学生等。

这些工厂只生产同种类产品,同种类产品称为同等级产品,也就是说:工厂方法模式只考虑生产同等级的产品,但是在现实生活中许多工厂是综合型的工厂,能生产多等级(种类) 的产品,如电器厂既生产电视机又生产洗衣机或空调,大学既有软件专业又有生物专业等。

本节要介绍的抽象工厂模式将考虑多等级产品的生产,将同一个具体工厂所生产的位于不同等级的一组产品称为一个产品族,下图所示横轴是产品等级,也就是同一类产品;纵轴是产品族,也就是同一品牌的产品,同一品牌的产品产自同一个工厂。

4.2.4.1 概念

是一种为访问类提供一个创建一组相关或相互依赖对象的接口,且访问类无须指定所要产品的具体类就能得到同族的不同等级的产品的模式结构。

抽象工厂模式是工厂方法模式的升级版本,工厂方法模式只生产一个等级的产品,而抽象工厂模式可生产多个等级的产品。

4.2.4.2 结构

抽象工厂模式的主要角色如下:

  • 抽象工厂(Abstract Factory):提供了创建产品的接口,它包含多个创建产品的方法,可以创建多个不同等级的产品。
  • 具体工厂(Concrete Factory):主要是实现抽象工厂中的多个抽象方法,完成具体产品的创建。
  • 抽象产品(Product):定义了产品的规范,描述了产品的主要特性和功能,抽象工厂模式有多个抽象产品。
  • 具体产品(ConcreteProduct):实现了抽象产品角色所定义的接口,由具体工厂来创建,它 同具体工厂之间是多对一的关系。
4.2.4.2 实现

现咖啡店业务发生改变,不仅要生产咖啡还要生产甜点,如提拉米苏、抹茶慕斯等,要是按照工厂方法模式,需要定义提拉米苏类、抹茶慕斯类、提拉米苏工厂、抹茶慕斯工厂、甜点工厂类,很容易发生类爆炸情况。其中拿铁咖啡、美式咖啡是一个产品等级,都是咖啡;提拉米苏、抹茶慕斯也是一个产品等级;拿铁咖啡和提拉米苏是同一产品族(也就是都属于意大利风味),美式咖啡和抹茶慕斯是同一产品族(也就是都属于美式风味)。所以这个案例可以使用抽象工厂模式实现。类图如下:

代码如下:

抽象工厂:

public interface DessertFactory {

    Coffee createCoffee();

    Dessert createDessert();
}

具体工厂:

//美式甜点工厂
public class AmericanDessertFactory implements DessertFactory {

    public Coffee createCoffee() {
        return new AmericanCoffee();
    }

    public Dessert createDessert() {
        return new MatchaMousse();
    }
}
//意大利风味甜点工厂
public class ItalyDessertFactory implements DessertFactory {

    public Coffee createCoffee() {
        return new LatteCoffee();
    }

    public Dessert createDessert() {
        return new Tiramisu();
    }
}

如果要加同一个产品族的话,只需要再加一个对应的工厂类即可,不需要修改其他的类。

4.2.4.3 优缺点

优点:

当一个产品族中的多个对象被设计成一起工作时,它能保证客户端始终只使用同一个产品族中的对象。

缺点:

当产品族中需要增加一个新的产品时,所有的工厂类都需要进行修改。

4.2.4.4 使用场景
  • 当需要创建的对象是一系列相互关联或相互依赖的产品族时,如电器工厂中的电视机、洗衣机、空调等。
  • 系统中有多个产品族,但每次只使用其中的某一族产品。如有人只喜欢穿某一个品牌的衣服和鞋。
  • 系统中提供了产品的类库,且所有产品的接口相同,客户端不依赖产品实例的创建细节和内部结构。

如:输入法换皮肤,一整套一起换。生成不同操作系统的程序。

4.2.5 模式扩展

简单工厂+配置文件解除耦合 Spring

可以通过工厂模式+配置文件的方式解除工厂对象和产品对象的耦合。在工厂类中加载配置文件中的全类名,并创建对象进行存储,客户端如果需要对象,直接进行获取即可。

第一步:定义配置文件

为了演示方便,我们使用properties文件作为配置文件,名称为bean.properties

american=com.itheima.pattern.factory.config_factory.AmericanCoffee
latte=com.itheima.pattern.factory.config_factory.LatteCoffee

第二步:改进工厂类

public class CoffeeFactory {

    private static Map<String,Coffee> map = new HashMap();

    static {
        Properties p = new Properties();
        InputStream is = CoffeeFactory.class.getClassLoader().getResourceAsStream("bean.properties");
        try {
            p.load(is);
            //遍历Properties集合对象
            Set<Object> keys = p.keySet();
            for (Object key : keys) {
                //根据键获取值(全类名)
                String className = p.getProperty((String) key);
                //获取字节码对象
                Class clazz = Class.forName(className);
                Coffee obj = (Coffee) clazz.newInstance();
                map.put((String)key,obj);
            }
        } catch (Exception e) {
            e.printStackTrace();
        }
    }

    //根据名称获取对象
    public static Coffee createCoffee(String name) {
        return map.get(name);
    }
}

静态成员变量用来存储创建的对象(键存储的是名称,值存储的是对应的对象),而读取配置文件以及创建对象写在静态代码块中,目的就是只需要执行一次。

增删修改咖啡类,只需要在配置文件 增加全类名即可

4.2.6 JDK源码解析-Collection.iterator方法

public class Demo {
    public static void main(String[] args) {
        List<String> list = new ArrayList<>();
        list.add("令狐冲");
        list.add("风清扬");
        list.add("任我行");

        //获取迭代器对象
        Iterator<String> it = list.iterator();
        //使用迭代器遍历
        while(it.hasNext()) {
            String ele = it.next();
            System.out.println(ele);
        }
    }
}

对上面的代码大家应该很熟,使用迭代器遍历集合,获取集合中的元素。而单列集合获取迭代器的方法就使用到了工厂方法模式。我们看通过类图看看结构:

Collection接口是抽象工厂类,ArrayList是具体的工厂类;Iterator接口是抽象商品类,ArrayList类中的Iter内部类是具体的商品类。在具体的工厂类中iterator()方法创建具体的商品类的对象

另:
1, DateForamt类中的getInstance()方法使用的是工厂模式;
2,Calendar类中的getInstance()方法使用的是工厂模式;

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1054428.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue3简易文字验证码

大神勿喷&#xff0c;简易版本&#xff0c;demo中可以用一下。 需要几个文字自己codelen 赋值 灵活点直接父组件传过去&#xff0c;可以自己改造 首先创建一个生成数字的js **mathcode.js**function MathCode(num){let str "寻寻觅觅冷冷清清凄凄惨惨戚戚乍暖还寒时候…

LeetCode 热题 HOT 100:回溯专题

LeetCode 热题 HOT 100&#xff1a;https://leetcode.cn/problem-list/2cktkvj/ 文章目录 17. 电话号码的字母组合22. 括号生成39. 组合总和46. 全排列补充&#xff1a;47. 全排列 II &#xff08;待优化)78. 子集79. 单词搜索124. 二叉树中的最大路径和200. 岛屿数量437. 路径…

object-fit,object-position让img标签表现得像背景图那样能自适应和调整显示位置

文章目录 一、object-fit的用法二、object-position的用法 图片在网页中有2种表现形式&#xff0c;使用CSS的background-image或者HTML的img标签来实现。 背景图实现如notion的封面图效果可以使用background-position或者background-size轻松实现&#xff0c;首先来看看notion…

2023年安全员-C证证模拟考试题库及安全员-C证理论考试试题

题库来源&#xff1a;安全生产模拟考试一点通公众号小程序 2023年安全员-C证证模拟考试题库及安全员-C证理论考试试题是由安全生产模拟考试一点通提供&#xff0c;安全员-C证证模拟考试题库是根据安全员-C证最新版教材&#xff0c;安全员-C证大纲整理而成&#xff08;含2023年…

【Java 进阶篇】JDBC Statement:执行 SQL 语句的重要接口

在Java应用程序中&#xff0c;与数据库进行交互是一项常见的任务。为了执行数据库操作&#xff0c;我们需要使用JDBC&#xff08;Java Database Connectivity&#xff09;来建立与数据库的连接并执行SQL语句。Statement接口是JDBC中的一个重要接口&#xff0c;它用于执行SQL语句…

leetCode 376.摆动序列 贪心算法

如果连续数字之间的差严格地在正数和负数之间交替&#xff0c;则数字序列称为 摆动序列 。第一个差&#xff08;如果存在的话&#xff09;可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。 例如&#xff0c; [1, 7, 4, 9, 2, 5] 是一个 摆动序列 &…

AI智能问答系统源码/AI绘画商业系统/支持GPT联网提问/支持Midjourney绘画

一、AI创作系统 SparkAi创作系统是基于国外很火的ChatGPT进行开发的AI智能问答系统和AI绘画系统。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。那么如何搭建部署AI创作ChatGPT&#xff1f;小编这里写一个详细图…

.360、.halo勒索病毒数据恢复|金蝶、用友、管家婆、OA、速达、ERP等软件数据库恢复

导言&#xff1a; 在网络犯罪的阴影下&#xff0c;.360和.halo勒索病毒显得格外神秘而危险&#xff0c;它们都属于BeijingCrypt勒索病毒家族旗下的病毒&#xff0c;两者加密特征一致&#xff0c;加密勒索信内容一致。本文91数据恢复将深度解析.360、.halo勒索病毒的内部机制&a…

【算法速查】一篇文章带你快速入门八大排序(上)

君兮_的个人主页 即使走的再远&#xff0c;也勿忘启程时的初心 C/C 游戏开发 Hello,米娜桑们&#xff0c;这里是君兮_&#xff0c;首先在这里祝大家中秋国庆双节同乐&#xff01;&#xff01;今天用一篇文章为大家把八大排序算法都过一遍&#xff0c;当然由于篇幅的原因不是每…

华为云云耀云服务器L实例评测|Ubuntu系统MySQL 8.1.0 Innovation压测

文章目录 前言&#x1f4e3; 1.前言概述&#x1f4e3; 2.云服务器性能监控&#x1f4e3; 3.MySQL8.1版本安装✨ 3.1 安装包下载✨ 3.2 解压安装包✨ 3.3 登录验证 &#x1f4e3; 4.ubuntu安装sysbench&#x1f4e3; 5.云服务器压测✨ 5.1 IO测试✨ 5.2 CPU性能测试 &#x1f4e…

React18+Ts项目配置husky、eslint、pretttier、commitLint

前言 我的项目版本如下&#xff1a; React&#xff1a; V18.2.0Node.js: V16.14.0TypeScript&#xff1a;最新版工具&#xff1a; VsCode 本文将采用图文详解的方式&#xff0c;手把手带你快速完成在React项目中配置husky、prettier、commitLint&#xff0c;实现编码规范的统…

Javaweb作业小结

简单的XML文档 用JS求连乘积 function product(N) { let p 1; for (let i 1; i < N; i) { p * 2 * i - 1; } return p; } // 调用函数并输出结果 const N 7; // 这里的 N 是你想要的奇数的个数 const result product(N); console.log(p ${result}); Servlet映射关系…

动态规划:两个数组的dp问题(C++)

动态规划&#xff1a;两个数组的dp问题 前言两个数组的dp问题1.最长公共子序列&#xff08;中等&#xff09;2.不同的子序列&#xff08;困难&#xff09;3.通配符匹配&#xff08;困难&#xff09;4.正则表达式&#xff08;困难&#xff09;5.交错字符串&#xff08;中等&…

Go结构体深度探索:从基础到应用

在Go语言中&#xff0c;结构体是核心的数据组织工具&#xff0c;提供了灵活的手段来处理复杂数据。本文深入探讨了结构体的定义、类型、字面量表示和使用方法&#xff0c;旨在为读者呈现Go结构体的全面视角。通过结构体&#xff0c;开发者可以实现更加模块化、高效的代码设计。…

背包问题

目录 开端 01背包问题 AcWing 01背包问题 Luogu P2925干草出售 Luogu P1048采药 完全背包问题 AcWing 完全背包问题 Luogu P1853投资的最大效益 多重背包问题 AcWing 多重背包问题 I AcWing 多重背包问题 II Luogu P1776宝物筛选 混合背包问题 AcWing 混合背包问题…

JavaSE学习之--抽象类和接口

&#x1f495;"没有眼泪我们就会迷路&#xff0c;彻底变成石头&#xff0c;我们的心会变成冰凌&#xff0c;吻会变成冰块。"&#x1f495; 作者&#xff1a;Mylvzi 文章主要内容&#xff1a;JavaSE学习之--抽象类和接口 一.抽象类 1.抽象类的定义 我们知道&#x…

数仓精品理论-做大数据还有没有前途?

数仓精品理论-做大数据还有没有前途&#xff1f; 做大数据还有没有前途&#xff1f;大数据三要三不要我来讲讲大数据前景 做大数据还有没有前途&#xff1f; 先说&#xff0c;答案是肯定的&#xff0c;但一定要记住三要三不要。 datapulse官网&#xff1a; github:https://data…

cesium gltf控制

gltf格式详解 glTF格式本质上是一个JSON文件。这一文件描述了整个3D场景的内容。它包含了对场景结构进行描述的场景图。场景中的3D对象通过场景结点引用网格进行定义。材质定义了3D对象的外观,动画定义了3D对象的变换操作(比如选择、平移操作)。蒙皮定义了3D对象如何进行骨骼…

黑豹程序员-架构师学习路线图-百科:HTML-网页三剑客

为什么需要HTML 在网站技术发达之前&#xff0c;千年来我们获取信息是通过书籍。电脑流行后我们看文章、小说通过txt文件。看图通过单独的图片流量工具看单个的图片文件。 而HTML把文字和图片一起展示&#xff0c;让今天的电子书成为可能。 另外一点&#xff0c;我们的信息是…

【操作系统】了解Linux操作系统中PCB进程管理模块与进程PID

本篇要分享的内容是有关于操作系统中进程的内容。 目录 1.进程的简单理解 2.了解task_struct&#xff08;进程控制模块&#xff09;内容分类 3.task_struct&#xff08;进程控制模块&#xff09;中的PID 4.调用查看PID的函数 1.进程的简单理解 首先我们需要理解的是什么是…