[NOIP2012 提高组] 开车旅行
题目描述
小 A \text{A} A 和小 B \text{B} B 决定利用假期外出旅行,他们将想去的城市从 $1 $ 到 n n n 编号,且编号较小的城市在编号较大的城市的西边,已知各个城市的海拔高度互不相同,记城市 i i i 的海拔高度为 h i h_i hi,城市 i i i 和城市 j j j 之间的距离 d i , j d_{i,j} di,j 恰好是这两个城市海拔高度之差的绝对值,即 d i , j = ∣ h i − h j ∣ d_{i,j}=|h_i-h_j| di,j=∣hi−hj∣。
旅行过程中,小 A \text{A} A 和小 B \text{B} B 轮流开车,第一天小 A \text{A} A 开车,之后每天轮换一次。他们计划选择一个城市 s s s 作为起点,一直向东行驶,并且最多行驶 x x x 公里就结束旅行。
小 A \text{A} A 和小 B \text{B} B 的驾驶风格不同,小 B \text{B} B 总是沿着前进方向选择一个最近的城市作为目的地,而小 A \text{A} A 总是沿着前进方向选择第二近的城市作为目的地(注意:本题中如果当前城市到两个城市的距离相同,则认为离海拔低的那个城市更近)。如果其中任何一人无法按照自己的原则选择目的城市,或者到达目的地会使行驶的总距离超出 x x x 公里,他们就会结束旅行。
在启程之前,小 A \text{A} A 想知道两个问题:
1、 对于一个给定的 x = x 0 x=x_0 x=x0,从哪一个城市出发,小 A \text{A} A 开车行驶的路程总数与小 B \text{B} B 行驶的路程总数的比值最小(如果小 B \text{B} B 的行驶路程为 0 0 0,此时的比值可视为无穷大,且两个无穷大视为相等)。如果从多个城市出发,小 A \text{A} A 开车行驶的路程总数与小 B \text{B} B 行驶的路程总数的比值都最小,则输出海拔最高的那个城市。
2、对任意给定的 x = x i x=x_i x=xi 和出发城市 s i s_i si,小 A \text{A} A 开车行驶的路程总数以及小 B \text B B 行驶的路程总数。
输入格式
第一行包含一个整数 n n n,表示城市的数目。
第二行有 n n n 个整数,每两个整数之间用一个空格隔开,依次表示城市 1 1 1 到城市 n n n 的海拔高度,即 h 1 , h 2 . . . h n h_1,h_2 ... h_n h1,h2...hn,且每个 h i h_i hi 都是互不相同的。
第三行包含一个整数 x 0 x_0 x0。
第四行为一个整数 m m m,表示给定 m m m 组 s i s_i si 和 x i x_i xi。
接下来的 m m m 行,每行包含 2 2 2 个整数 s i s_i si 和 x i x_i xi,表示从城市 s i s_i si 出发,最多行驶 x i x_i xi 公里。
输出格式
输出共 m + 1 m+1 m+1 行。
第一行包含一个整数 s 0 s_0 s0,表示对于给定的 x 0 x_0 x0,从编号为 s 0 s_0 s0 的城市出发,小 A \text A A 开车行驶的路程总数与小 B \text B B 行驶的路程总数的比值最小。
接下来的 m m m 行,每行包含 2 2 2 个整数,之间用一个空格隔开,依次表示在给定的 s i s_i si 和 x i x_i xi 下小 A \text A A 行驶的里程总数和小 B \text B B 行驶的里程总数。
样例 #1
样例输入 #1
4
2 3 1 4
3
4
1 3
2 3
3 3
4 3
样例输出 #1
1
1 1
2 0
0 0
0 0
样例 #2
样例输入 #2
10
4 5 6 1 2 3 7 8 9 10
7
10
1 7
2 7
3 7
4 7
5 7
6 7
7 7
8 7
9 7
10 7
样例输出 #2
2
3 2
2 4
2 1
2 4
5 1
5 1
2 1
2 0
0 0
0 0
提示
【样例1说明】
各个城市的海拔高度以及两个城市间的距离如上图所示。
如果从城市 1 1 1 出发,可以到达的城市为 2 , 3 , 4 2,3,4 2,3,4,这几个城市与城市 1 1 1 的距离分别为 1 , 1 , 2 1,1,2 1,1,2,但是由于城市 3 3 3 的海拔高度低于城市 2 2 2,所以我们认为城市 3 3 3 离城市 1 1 1 最近,城市 2 2 2 离城市 1 1 1 第二近,所以小A会走到城市 2 2 2。到达城市 2 2 2 后,前面可以到达的城市为 3 , 4 3,4 3,4,这两个城市与城市 2 2 2 的距离分别为 2 , 1 2,1 2,1,所以城市 4 4 4 离城市 2 2 2 最近,因此小B会走到城市 4 4 4。到达城市 4 4 4 后,前面已没有可到达的城市,所以旅行结束。
如果从城市 2 2 2 出发,可以到达的城市为 3 , 4 3,4 3,4,这两个城市与城市 2 2 2 的距离分别为 2 , 1 2,1 2,1,由于城市 3 3 3 离城市 2 2 2 第二近,所以小 A \text A A 会走到城市 3 3 3。到达城市 3 3 3 后,前面尚未旅行的城市为 4 4 4,所以城市 4 4 4 离城市 3 3 3 最近,但是如果要到达城市 4 4 4,则总路程为 2 + 3 = 5 > 3 2+3=5>3 2+3=5>3,所以小 B \text B B 会直接在城市 3 3 3 结束旅行。
如果从城市 3 3 3 出发,可以到达的城市为 4 4 4,由于没有离城市 3 3 3 第二近的城市,因此旅行还未开始就结束了。
如果从城市 4 4 4 出发,没有可以到达的城市,因此旅行还未开始就结束了。
【样例2说明】
当 x = 7 x=7 x=7 时,如果从城市 1 1 1 出发,则路线为 1 → 2 → 3 → 8 → 9 1 \to 2 \to 3 \to 8 \to 9 1→2→3→8→9,小 A \text A A 走的距离为 1 + 2 = 3 1+2=3 1+2=3,小 B \text B B 走的距离为 1 + 1 = 2 1+1=2 1+1=2。(在城市 1 1 1 时,距离小 A \text A A 最近的城市是 2 2 2 和 6 6 6,但是城市 2 2 2 的海拔更高,视为与城市 1 1 1 第二近的城市,所以小 A \text A A 最终选择城市 2 2 2;走到 9 9 9 后,小 A \text A A 只有城市 10 10 10 可以走,没有第二选择可以选,所以没法做出选择,结束旅行)
如果从城市 2 2 2 出发,则路线为 2 → 6 → 7 2 \to 6 \to 7 2→6→7,小 A \text A A 和小 B \text B B 走的距离分别为 2 , 4 2,4 2,4。
如果从城市 3 3 3 出发,则路线为 3 → 8 → 9 3 \to 8 \to 9 3→8→9,小 A \text A A 和小 B \text B B 走的距离分别为 2 , 1 2,1 2,1。
如果从城市 4 4 4 出发,则路线为 4 → 6 → 7 4 \to 6 \to 7 4→6→7,小 A \text A A 和小 B \text B B 走的距离分别为 2 , 4 2,4 2,4。
如果从城市 5 5 5 出发,则路线为 5 → 7 → 8 5 \to 7 \to 8 5→7→8,小 A \text A A 和小 B \text B B 走的距离分别为 5 , 1 5,1 5,1。
如果从城市 6 6 6 出发,则路线为 6 → 8 → 9 6 \to 8 \to 9 6→8→9,小 A \text A A 和小 B \text B B 走的距离分别为 5 , 1 5,1 5,1。
如果从城市 7 7 7 出发,则路线为 7 → 9 → 10 7 \to 9 \to 10 7→9→10,小 A \text A A 和小 B \text B B 走的距离分别为 2 , 1 2,1 2,1。
如果从城市 8 8 8 出发,则路线为 8 → 10 8 \to 10 8→10,小 A \text A A 和小 B \text B B 走的距离分别为 2 , 0 2,0 2,0。
如果从城市 9 9 9 出发,则路线为 9 9 9,小 A \text A A 和小 B \text B B 走的距离分别为 0 , 0 0,0 0,0(旅行一开始就结束了)。
如果从城市 10 10 10 出发,则路线为 10 10 10,小 A \text A A 和小 B \text B B 走的距离分别为 0 , 0 0,0 0,0。
从城市 2 2 2 或者城市 4 4 4 出发小 A \text A A 行驶的路程总数与小 B \text B B 行驶的路程总数的比值都最小,但是城市 2 2 2 的海拔更高,所以输出第一行为 2 2 2。
【数据范围与约定】
对于
30
%
30\%
30% 的数据,有
1
≤
n
≤
20
,
1
≤
m
≤
20
1\le n \le 20,1\le m\le 20
1≤n≤20,1≤m≤20;
对于
40
%
40\%
40% 的数据,有
1
≤
n
≤
100
,
1
≤
m
≤
100
1\le n \le 100,1\le m\le 100
1≤n≤100,1≤m≤100;
对于
50
%
50\%
50% 的数据,有
1
≤
n
≤
100
,
1
≤
m
≤
1000
1\le n \le 100,1\le m\le 1000
1≤n≤100,1≤m≤1000;
对于
70
%
70\%
70% 的数据,有
1
≤
n
≤
1000
,
1
≤
m
≤
1
0
4
1\le n \le 1000,1\le m\le 10^4
1≤n≤1000,1≤m≤104;
对于
100
%
100\%
100% 的数据:
1
≤
n
,
m
≤
1
0
5
1\le n,m \le 10^5
1≤n,m≤105,
−
1
0
9
≤
h
i
≤
1
0
9
-10^9 \le h_i≤10^9
−109≤hi≤109,
1
≤
s
i
≤
n
1 \le s_i \le n
1≤si≤n,
0
≤
x
i
≤
1
0
9
0 \le x_i \le 10^9
0≤xi≤109
数据保证
h
i
h_i
hi 互不相同。
完整代码
#include<iostream>
#include<cstdio>
#include<cmath>
#include<set>
using namespace std;
const int N=1e5+200,INF=2e9;
struct City
{
int id,al;//identifier,altitude
friend bool operator < (City a,City b)
{
return a.al<b.al;
}
};
int n,m,x0,la,lb,ansid;
int h[N],s[N],x[N];
int f[20][N][5],da[20][N][5],db[20][N][5];
double ans=INF*1.0;
multiset<City> q;
void calc(int S,int X)
{
int p=S;
la=0,lb=0;
for(int i=18;i>=0;i--)
if(f[i][p][0] && la+lb+da[i][p][0]+db[i][p][0]<=X)
{
la+=da[i][p][0];
lb+=db[i][p][0];
p=f[i][p][0];
}
}
void pre()
{
h[0]=INF,h[n+1]=-INF;
City st;//start
st.id=0,st.al=INF;
q.insert(st),q.insert(st);
st.id=n+1,st.al=-INF;
q.insert(st),q.insert(st);
for(int i=n;i;i--)
{
int ga,gb;
City now;
now.id=i,now.al=h[i];
q.insert(now);
set<City>::iterator p=q.lower_bound(now);
p--;
int lt=(*p).id,lh=(*p).al;//last
p++,p++;
int ne=(*p).id,nh=(*p).al;//next
p--;
if(abs(nh-h[i])>=abs(h[i]-lh))
{
gb=lt;
p--,p--;
if(abs(nh-h[i])>=abs(h[i]-(*p).al))
ga=(*p).id;
else
ga=ne;
}
else
{
gb=ne;
p++,p++;
if(abs((*p).al-h[i])>=abs(h[i]-lh))
ga=lt;
else
ga=(*p).id;
}//2、预处理
f[0][i][0]=ga,f[0][i][1]=gb;
da[0][i][0]=abs(h[i]-h[ga]);
db[0][i][1]=abs(h[i]-h[gb]);//3、DP初值
}
for(int i=1;i<=18;i++)
for(int j=1;j<=n;j++)
for(int k=0;k<2;k++)
if(i==1)
{
f[1][j][k]=f[0][f[0][j][k]][1-k];
da[1][j][k]=da[0][j][k]+da[0][f[0][j][k]][1-k];
db[1][j][k]=db[0][j][k]+db[0][f[0][j][k]][1-k];
}
else
{
f[i][j][k]=f[i-1][f[i-1][j][k]][k];
da[i][j][k]=da[i-1][j][k]+da[i-1][f[i-1][j][k]][k];
db[i][j][k]=db[i-1][j][k]+db[i-1][f[i-1][j][k]][k];
}//3、倍增优化DP
}
int main()
{
cin>>n;
for(int i=1;i<=n;i++)
scanf("%d",&h[i]);
cin>>x0>>m;
for(int i=1;i<=m;i++)
scanf("%d%d",&s[i],&x[i]);//1、输入
pre();
for(int i=1;i<=n;i++)
{
calc(i,x0);
double nowans=(double)la/(double)lb;
if(nowans<ans)
{
ans=nowans;
ansid=i;
}
else
if(nowans==ans && h[ansid]<h[i])
ansid=i;
}
cout<<ansid<<endl;//4、求解问题1
for(int i=1;i<=m;i++)
{
calc(s[i],x[i]);
printf("%d %d\n",la,lb);
}//5、求解问题2
return 0;
}