数据结构与算法_二叉搜索树

news2024/11/27 11:50:03

二叉搜索树可以说是二叉树的升级版,在数据的查找上,它优于普通二叉树。要让普通二叉树成为二叉搜索树,就要对于树中每个节点X,它左子树中所有节点元素的值小于X中的值,它右子树中所有节点元素的值大于X中的值。

请看下边这两棵树,左边的树是一棵二叉搜索树,右边的树并不是二叉搜索树,因为7比6要大,而它却在6的左子树中。

目录

一、二叉搜索树的概念

二、二叉搜索树操作

查找

插入

删除

三、二叉搜索树的代码实现

四、二叉搜索树的应用

key模型

KV模型

key模型和KV模型的实现:


一、二叉搜索树的概念

二叉搜索树又称二叉排序树,它可以是一棵空树......也可以是具有如下性质的二叉树:

若它的左子树不为空,则左子树上所有节点的值都小于根节点的值;

若它的右子树不为空,则右子树上所有节点的值都大于根节点的值;

它的左右子树也分别为二叉搜索树。

二、二叉搜索树操作

查找

a、从根节点开始比较,查找,比根大则往右边走查找,比根小则往左边走查找;

b、最多查找高度次,走到空还没找到,则这个值不存在。

为什么说最多查找高度次?因为,如果二叉搜索树是下面这种形态,其实就趋近于链表了:

插入

a.数为空,则直接新增节点,赋值给root指针;

b.树不为空,按二叉搜索树的性质查找插入位置,插入新节点。

如下图,是依次插入16和0后的二叉搜索树:

删除

首先查找元素是否存在于二叉搜索树中。如果不存咋,就返回。如果存在,应该根据下面四种情况来删除:

a.要删除的节点无孩子节点;

b.要删除的节点只有左孩子节点;

c.要删除的节点只有右孩子节点;

d.要删除的节点有左、右孩子节点。

看起来,有四种情况,事实上,a和b的情况可以放在一起考虑,那么删除过程如下:

情况b:删除该节点且使被删除节点的双亲节点指向被删除节点的左孩子节点——直接删除

情况c:删除该节点且使被删除节点的双亲节点指向被删除节点的右孩子节点——直接删除

情况d:在它的右子树中寻找中序下的第一个节点(关键码最小),用它的值填补到被删除节点中,再来处理该节点的删除问题——替换法删除

如下图,依次删除7、14、3、8

7和14属于直接删除的场景

3和8属于需要替换法进行删除的场景

三、二叉搜索树的代码实现

template<class K>
struct BSTreeNode
{
	BSTreeNode<K>* _left;
	BSTreeNode<K>* _right;
	K _key;

	BSTreeNode(const K& key)
		:_left(nullptr)
		, _right(nullptr)
		, _key(key)
	{}
};

template<class K>
class BSTree
{
	typedef struct BSTreeNode<K> Node;
public:
	BSTree()
		:_root(nullptr)
	{}

	bool Insert(const K& key)
	{
		if (_root == nullptr)
		{
			_root = new Node(key);
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}
		cur = new Node(key);
		if (parent->_key < key)
		{
			parent->_right = cur;
		}
		else
		{
			parent->_left = cur;
		}
		return true;
	}

	bool Find(const K& key)
	{
		Node* cur = _root;
		while (cur)
		{
			if (cur->_key < key)
			{
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				cur = cur->_left;
			}
			else
			{
				return true;
			}
		}
		return false;
	}

	bool Erase(const K& key)
	{
		Node* parent = nullptr;
		Node* cur = _root;

		while (cur)
		{
			if (cur->_key < key)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_key > key)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				if (cur->_left == nullptr)
				{
					if (cur == _root)
					{
						_root = cur->_right;
					}
					else
					{
						if (parent->_right == cur)
						{
							parent->_right = cur->_right;
						}
						else
						{
							parent->_left = cur->_right;
						}
					}
				}
				else if (cur->_right == nullptr)
				{
					if (cur == _root)
					{
						_root = cur->_left;
					}
					else
					{
						if (parent->_right = cur)
						{
							parent->_right = cur->_left;
						}
						else
						{
							parent->_left = cur->_left;
						}
					}
				}
				else
				{
					Node* parent = cur;
					Node* leftMax = cur->_left;
					while (leftMax->_right)
					{
						parent = leftMax;
						leftMax = leftMax->_right;
					}
					swap(cur->_key, leftMax->_key);
					if (parent->_left == leftMax)
					{
						parent->_left = leftMax->_left;
					}
					else
					{
						parent->_right = leftMax->_left;
					}
					cur = leftMax;
				}
				delete cur;
				return true;
			}
		}
		return false;
	}
	void InOrder()
	{
		_InOrder(_root);
		cout << endl;
	}
	void _InOrder(Node* root)
	{
		if (root == nullptr)
		{
			return;
		}
		_InOrder(root->_left);
		cout << root->_key << " ";
		_InOrder(root->_right);
	}
	private:
		Node* _root;
};

四、二叉搜索树的应用

key模型

K模型即只有key作为关键码,结构中只需要存储Key即可,关键码即为需要搜索到的值。

比如:给一个单词word,判断该单词是否拼写正确,具体方式如下:

以词库中所有单词集合中的每个单词作为key,构建一棵二叉搜索树;

在二叉搜索树中检索该单词是否存在,存在则拼写正确,不存在则拼写错误。 

KV模型

每一个关键码key,都有与之对应的值Value,即<Key, Value>的键值对。该种方式在现实生活中非常常见:

比如英汉词典就是英文与中文的对应关系,通过英文可以快速找到与其对应的中文,英文单词与对应的中文<word, chinese>就构成一种键值对;

再比如统计单词次数,统计成功后,给定单词就可快速找到其出现的次数,单词与其出现次数就是<word, count>就构成一种键值对。

key模型和KV模型的实现:

namespace key
{
	template<class K>
	struct BSTreeNode
	{
		BSTreeNode<K>* _left;
		BSTreeNode<K>* _right;
		K _key;

		BSTreeNode(const K& key)
			:_left(nullptr)
			, _right(nullptr)
			, _key(key)
		{}
	};

	template<class K>
	class BSTree
	{
		typedef BSTreeNode<K> Node;
	public:
		BSTree()
			:_root(nullptr)
		{}

		BSTree(const BSTree<K>& t)
		{
			_root = Copy(t._root);
		}

		BSTree<K>& operator=(BSTree<K> t)
		{
			swap(_root, t._root);
			return *this;
		}

		~BSTree()
		{
			Destroy(_root);
		}

		bool Insert(const K& key)
		{
			if (_root == nullptr)
			{
				_root = new Node(key);
				return true;
			}

			Node* parent = nullptr;
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					return false;
				}
			}

			cur = new Node(key);
			if (parent->_key < key)
			{
				parent->_right = cur;
			}
			else
			{
				parent->_left = cur;
			}

			return true;
		}

		bool Find(const K& key)
		{
			Node* cur = _root;
			while (cur)
			{
				if (cur->_key < key)
				{
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					cur = cur->_left;
				}
				else
				{
					return true;
				}
			}

			return false;
		}

		bool Erase(const K& key)
		{
			Node* parent = nullptr;
			Node* cur = _root;

			while (cur)
			{
				if (cur->_key < key)
				{
					parent = cur;
					cur = cur->_right;
				}
				else if (cur->_key > key)
				{
					parent = cur;
					cur = cur->_left;
				}
				else
				{
					
					if (cur->_left == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_right;
						}
						else
						{
							if (parent->_right == cur)
							{
								parent->_right = cur->_right;
							}
							else
							{
								parent->_left = cur->_right;
							}
						}
					}
					else if (cur->_right == nullptr)
					{
						if (cur == _root)
						{
							_root = cur->_left;
						}
						else
						{
							if (parent->_right == cur)
							{
								parent->_right = cur->_left;
							}
							else
							{
								parent->_left = cur->_left;
							}
						}
					}
					else
					{
						Node* parent = cur;
						Node* leftMax = cur->_left;
						while (leftMax->_right)
						{
							parent = leftMax;
							leftMax = leftMax->_right;
						}

						swap(cur->_key, leftMax->_key);

						if (parent->_left == leftMax)
						{
							parent->_left = leftMax->_left;
						}
						else
						{
							parent->_right = leftMax->_left;
						}

						cur = leftMax;
					}

					delete cur;
					return true;
				}
			}

			return false;
		}

		void InOrder()
		{
			_InOrder(_root);
			cout << endl;
		}

		bool FindR(const K& key)
		{
			return _FindR(_root, key);
		}

		bool InsertR(const K& key)
		{
			return _InsertR(_root, key);
		}

		bool EraseR(const K& key)
		{
			return _EraseR(_root, key);
		}

	private:
		Node* Copy(Node* root)
		{
			if (root == nullptr)
				return nullptr;

			Node* copyroot = new Node(root->_key);
			copyroot->_left = Copy(root->_left);
			copyroot->_right = Copy(root->_right);
			return copyroot;
		}

		void Destroy(Node*& root)
		{
			if (root == nullptr)
				return;

			Destroy(root->_left);
			Destroy(root->_right);
			delete root;
			root = nullptr;
		}

		bool _EraseR(Node*& root, const K& key)
		{
			if (root == nullptr)
				return false;

			if (root->_key < key)
			{
				return _EraseR(root->_right, key);
			}
			else if (root->_key > key)
			{
				return _EraseR(root->_left, key);
			}
			else
			{
				Node* del = root;

				if (root->_left == nullptr)
				{
					root = root->_right;
				}
				else if (root->_right == nullptr)
				{
					root = root->_left;
				}
				else
				{
					Node* leftMax = root->_left;
					while (leftMax->_right)
					{
						leftMax = leftMax->_right;
					}

					swap(root->_key, leftMax->_key);

					return _EraseR(root->_left, key);
				}

				delete del;
				return true;
			}
		}

		bool _InsertR(Node*& root, const K& key)
		{
			if (root == nullptr)
			{
				root = new Node(key);
				return true;
			}

			if (root->_key < key)
			{
				return _InsertR(root->_right, key);
			}
			else if (root->_key > key)
			{
				return _InsertR(root->_left, key);
			}
			else
			{
				return false;
			}
		}

		bool _FindR(Node* root, const K& key)
		{
			if (root == nullptr)
				return false;

			if (root->_key < key)
			{
				return _FindR(root->_right, key);
			}
			else if (root->_key > key)
			{
				return _FindR(root->_left, key);
			}
			else
			{
				return true;
			}
		}

		void _InOrder(Node* root)
		{
			if (root == NULL)
			{
				return;
			}

			_InOrder(root->_left);
			cout << root->_key << " ";
			_InOrder(root->_right);
		}
	private:
		Node* _root;
	};

namespace key_value
{
	template<class K, class V>
	struct BSTreeNode
	{
		BSTreeNode<K, V>* _left;
		BSTreeNode<K, V>* _right;
		K _key;
		V _value;

		BSTreeNode(const K& key, const V& value)
			:_left(nullptr)
			, _right(nullptr)
			, _key(key)
			, _value(value)
		{}
	};

	template<class K, class V>
	class BSTree
	{
		typedef BSTreeNode<K, V> Node;
	public:
		BSTree()
			:_root(nullptr)
		{}

		void InOrder()
		{
			_InOrder(_root);
			cout << endl;
		}

		Node* FindR(const K& key)
		{
			return _FindR(_root, key);
		}

		bool InsertR(const K& key, const V& value)
		{
			return _InsertR(_root, key, value);
		}

		bool EraseR(const K& key)
		{
			return _EraseR(_root, key);
		}

	private:
		bool _EraseR(Node*& root, const K& key)
		{
			if (root == nullptr)
				return false;

			if (root->_key < key)
			{
				return _EraseR(root->_right, key);
			}
			else if (root->_key > key)
			{
				return _EraseR(root->_left, key);
			}
			else
			{
				Node* del = root;

				if (root->_left == nullptr)
				{
					root = root->_right;
				}
				else if (root->_right == nullptr)
				{
					root = root->_left;
				}
				else
				{
					Node* leftMax = root->_left;
					while (leftMax->_right)
					{
						leftMax = leftMax->_right;
					}

					swap(root->_key, leftMax->_key);

					return _EraseR(root->_left, key);
				}

				delete del;
				return true;
			}
		}

		bool _InsertR(Node*& root, const K& key, const V& value)
		{
			if (root == nullptr)
			{
				root = new Node(key, value);
				return true;
			}

			if (root->_key < key)
			{
				return _InsertR(root->_right, key, value);
			}
			else if (root->_key > key)
			{
				return _InsertR(root->_left, key, value);
			}
			else
			{
				return false;
			}
		}

		Node* _FindR(Node* root, const K& key)
		{
			if (root == nullptr)
				return nullptr;

			if (root->_key < key)
			{
				return _FindR(root->_right, key);
			}
			else if (root->_key > key)
			{
				return _FindR(root->_left, key);
			}
			else
			{
				return root;
			}
		}

		void _InOrder(Node* root)
		{
			if (root == NULL)
			{
				return;
			}

			_InOrder(root->_left);
			cout << root->_key << ":" << root->_value << endl;
			_InOrder(root->_right);
		}
	private:
		Node* _root;
	};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1052867.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ElasticSearch - 基于 JavaRestClient 查询文档(match、精确、复合查询,以及排序、分页、高亮)

目录 一、基于 JavaRestClient 查询文档 1.1、查询 API 演示 1.1.1、查询基本框架 DSL 请求的对应格式 响应的解析 1.1.2、全文检索查询 1.1.3、精确查询 1.1.4、复合查询 1.1.5、排序和分页 1.1.6、高亮 一、基于 JavaRestClient 查询文档 1.1、查询 API 演示 1.1.…

面向对象特性分析大全集

面向对象特性分析 先进行专栏介绍 面向对象总析前提小知识分类浅析封装浅析继承浅析多态面向对象编程优点abc 核心思想实际应用总结 封装概念详解关键主要目的核心思想优点12 缺点12 Java代码实现封装特性 继承概念详解语法示例关键主要目的核心思想优点12 缺点12 Java代码实现…

elasticsearch+logstash+kibana整合(ELK的使用)第一课

一、安装elasticsearch 0、创建目录&#xff0c;统一放到/data/service/elk 1、下载安装包 wget https://artifacts.elastic.co/downloads/elasticsearch/elasticsearch-7.1.0-linux-x86_64.tar.gz2、解压 tar -xzvf elasticsearch-7.1.0-linux-x86_64.tar.gz3、新建用户和组…

蓝桥等考Python组别八级005

第一部分&#xff1a;选择题 1、Python L8 &#xff08;15分&#xff09; 运行下面程序&#xff0c;输出的结果是&#xff08; &#xff09;。 i 1 while i < 4: print(i, end ) i 1 1 2 30 1 2 31 2 3 40 1 2 3 4 正确答案&#xff1a;C 2、Python L8 &#…

详解分布式搜索技术之elasticsearch

目录 一、初识elasticsearch 1.1什么是elasticsearch 1.2elasticsearch的发展 1.3为什么学习elasticsearch? 1.4正向索引和倒排索引 1.4.1传统数据库采用正向索引 1.4.2elasticsearch采用倒排索引 1.4.3posting list ​1.4.4总结 1.5 es的一些概念 1.5.1文档和字段 …

排序篇(二)----选择排序

排序篇(二)----选择排序 1.直接选择排序 基本思想&#xff1a; 每一次从待排序的数据元素中选出最小&#xff08;或最大&#xff09;的一个元素&#xff0c;存放在序列的起始位置&#xff0c;直到全部待排序的数据元素排完 。 直接选择排序: ​ 在元素集合array[i]–array[…

【Idea】idea、datagrip设置输入法

https://github.com/RikudouPatrickstar/JetBrainsRuntime-for-Linux-x64/releases/tag/jbr-release-17.0.6b829.5https://github.com/RikudouPatrickstar/JetBrainsRuntime-for-Linux-x64/releases/tag/jbr-release-17.0.6b829.5 下载后解压并重命名为 jbr, 然后替换对应 ide…

SpringBoot使用Docker并上传至DockerHub

我的新书《Android App开发入门与实战》已于2020年8月由人民邮电出版社出版&#xff0c;欢迎购买。点击进入详情 文章目录 1.系列文章2.构建docker镜像的方式3.docker操作3.1 安装docker3.2 查看docker镜像3.3 本地运行docker3.4 修改tag3.5 推送docker镜像3.6 远端server拉取d…

SPSS列联表分析

前言&#xff1a; 本专栏参考教材为《SPSS22.0从入门到精通》&#xff0c;由于软件版本原因&#xff0c;部分内容有所改变&#xff0c;为适应软件版本的变化&#xff0c;特此创作此专栏便于大家学习。本专栏使用软件为&#xff1a;SPSS25.0 本专栏所有的数据文件可在个人主页—…

玩转数据-大数据-Flink SQL 中的时间属性

一、说明 时间属性是大数据中的一个重要方面&#xff0c;像窗口&#xff08;在 Table API 和 SQL &#xff09;这种基于时间的操作&#xff0c;需要有时间信息。我们可以通过时间属性来更加灵活高效地处理数据&#xff0c;下面我们通过处理时间和事件时间来探讨一下Flink SQL …

信号类型(雷达)——脉冲雷达(四)

系列文章目录 《信号类型&#xff08;雷达通信&#xff09;》 《信号类型&#xff08;雷达&#xff09;——雷达波形认识&#xff08;一&#xff09;》 《信号类型&#xff08;雷达&#xff09;——连续波雷达&#xff08;二&#xff09;》 《信号类型&#xff08;雷达&…

浏览器输入 URL 并回车发生了什么

本文节选自我的博客&#xff1a;浏览器输入 URL 并回车发生了什么 &#x1f496; 作者简介&#xff1a;大家好&#xff0c;我是MilesChen&#xff0c;偏前端的全栈开发者。&#x1f4dd; CSDN主页&#xff1a;爱吃糖的猫&#x1f525;&#x1f4e3; 我的博客&#xff1a;爱吃糖…

建站软件WordPress和phpcms体验

一、网站程序 什么是网站程序? 网站程序是由程序员编写的一个网站安装包,程序是网站内容的载体。 常见的网站程序有: dedecms , phpcms ,帝国cms ,米拓cms , WordPress , discuz , ECShop ,shopex , z-blog等,根据不同类型的网站我们来选择不同的网站程序。 比如说搭建一个…

格拉姆角场GAF将时序数据转换为图像,可以应用于故障诊断等多个领域

效果 2.代码(这里用随机生成的数据来模拟一维振动信号,利用格拉姆角场GAF将时序数据转换为图像,并划分为训练集和测试集,最后利用SVM分类) # -*- coding: utf-8 -*- """ Created on Sat Sep 30 21:35:36 2023@author: pony """import nump…

5自由度雄克机械臂仿真描点

5自由度雄克机械臂仿真描点 任务 建立雄克机械臂的坐标系和D-H参数表&#xff0c;使用Matlab机器人工具箱&#xff08;Robotics Toolbox&#xff09;&#xff0c;用机械臂末端执行器触碰8个红色的目标点。 代码 %% 机器人学 format compact close all clear clc%% DH参数 L…

算法基础课第二部分

算法基础课 第四讲 数学知识AcWing1381. 阶乘(同余&#xff0c;因式分解) 质数AcWing 866. 质数的判定---试除法AcWing 868. 质数的判定---埃氏筛AcWing867. 分解质因数---试除法AcWing 197. 阶乘---分解质因数---埃式筛 约数AcWing 869. 求约数---试除法AcWing 870. 约数个数-…

JUnit介绍

JUnit是用于编写和运行可重复的自动化测试的开源测试框架&#xff0c; 这样可以保证我们的代码按预期工作。JUnit可广泛用于工业和作为支架(从命令行)或IDE(如Eclipse)内单独的Java程序。 JUnit提供&#xff1a; 断言测试预期结果。 测试功能共享通用的测试数据。 测试套件轻…

【Django 笔记】第一个demo

1. pip 安装 2. django 指令 D:\software\python3\anconda3\Lib\site-packages\django\bin>django-adminType django-admin help <subcommand> for help on a specific subcommand.Available subcommands:[django]checkcompilemessagescreatecachetabledbshelldiff…

【C++学习】多态

目录 一、多态的概念 1. 概念 二、多态的定义及实现 2.1 多态的构成条件 2.2 虚函数 2.3 虚函数的重写 2.4 C11 override 和 final 2.5 重载、覆盖(重写)、隐藏(重定义)的对比 三、抽象类 3.1 概念 3.2 接口继承和实现继承 四、多态的原理 4.1 虚函数表 4.2 多态的…

【JavaEE初阶】 计算机是如何工作的

文章目录 &#x1f332;计算机发展史&#x1f38b;冯诺依曼体系&#xff08;Von Neumann Architecture&#xff09;&#x1f38d;CPU 基本工作流程&#x1f4cc;逻辑门&#x1f388;电子开关 —— 机械继电器(Mechanical Relay)&#x1f388;门电路(Gate Circuit)NOT GATE&…