效果
2.代码(这里用随机生成的数据来模拟一维振动信号,利用格拉姆角场GAF将时序数据转换为图像,并划分为训练集和测试集,最后利用SVM分类)
# -*- coding: utf-8 -*-
"""
Created on Sat Sep 30 21:35:36 2023
@author: pony
"""
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import accuracy_score
from pyts.image import GramianAngularField
from pyts.datasets import make_cylinder_bell_funnel
# 生成示例时间序列数据
X, y = make_cylinder_bell_funnel(n_samples=100, random_state=42)
# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 创建格拉姆角场转换器对象(使用 GASF 方法)
gasf = GramianAngularField(image_size=24, method='summation